From lifting objects to lifting diagrams: recent progress on larders and CLL

Friedrich Wehrung

Université de Caen
LMNO, UMR 6139
Département de Mathématiques
14032 Caen cedex

E-mail: wehrung@math.unicaen.fr
URL: http://www.math.unicaen.fr/~wehrung

Most of the results discussed here obtained with Pierre Gillibert.

August 17, 2009
We are given categories \mathcal{A}, \mathcal{B}, \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$.
We are given categories \mathcal{A}, \mathcal{B}, \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(A) \cong \Psi\Gamma(A)$, naturally in \mathcal{A}, for “many” (ideally, all) $A \in \mathcal{A}$.
We are given categories \(\mathcal{A}, \mathcal{B}, \mathcal{S} \) together with functors \(\Phi: \mathcal{A} \to \mathcal{S} \) and \(\Psi: \mathcal{B} \to \mathcal{S} \). We are trying to find a functor \(\Gamma: \mathcal{A} \to \mathcal{B} \) such that \(\Phi(A) \cong \Psi(\Gamma(A)) \), naturally in \(\mathcal{A} \), for “many” (ideally, all) \(A \in \mathcal{A} \).
We are given categories \mathcal{A}, \mathcal{B}, \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(A) \cong \Psi \Gamma(A)$, naturally in \mathcal{A}, for “many” (ideally, all) $A \in \mathcal{A}$.
General categorical settings

We are given categories \mathcal{A}, \mathcal{B}, \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(A) \cong \Psi \Gamma(A)$, naturally in \mathcal{A}, for “many” (ideally, all) $A \in \mathcal{A}$.

Hence we need an assumption of the form “for many $A \in \mathcal{A}$, there exists $B \in \mathcal{B}$ such that $\Phi(A) \cong \Psi(B)$”.

\[\begin{array}{ccc}
\Phi & \longrightarrow & \Psi \\
\mathcal{A} & \quad & \mathcal{B} \\
\downarrow \Phi & & \downarrow \Psi \\
\mathcal{S} & & \mathcal{S} \\
\Gamma & \longrightarrow & \\
\mathcal{A} & \quad & \mathcal{B}
\end{array} \]
We are given categories \mathcal{A}, \mathcal{B}, \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(A) \cong \Psi \Gamma(A)$, naturally in \mathcal{A}, for “many” (ideally, all) $A \in \mathcal{A}$.

Hence we need an assumption of the form “for many $A \in \mathcal{A}$, there exists $B \in \mathcal{B}$ such that $\Phi(A) \cong \Psi(B)$”. Ask for $\Gamma: \mathcal{A} \leftrightarrow \mathcal{B}$ to be a functor (at least on a large enough subcategory of \mathcal{A}).
We are given categories \mathcal{A}, \mathcal{B}, \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$. We are trying to find a functor $\Gamma: \mathcal{A} \to \mathcal{B}$ such that $\Phi(A) \cong \Psi \Gamma(A)$, naturally in \mathcal{A}, for “many” (ideally, all) $A \in \mathcal{A}$.

Hence we need an assumption of the form “for many $A \in \mathcal{A}$, there exists $B \in \mathcal{B}$ such that $\Phi(A) \cong \Psi(B)$”. Ask for $\Gamma: \mathcal{A} \leftrightarrow \mathcal{B}$ to be a functor (at least on a large enough subcategory of \mathcal{A}).

Let’s see some examples.
Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that Con_{L}, the $(\lor, 0)$-semilattice of all compact (finitely generated) congruences of L, is isomorphic to D.
Theorem (Schmidt 1981)

For each distributive 0-lattice D,

Theorem (Schmidt 1981)

For each distributive 0-lattice D,
Distributive 0-lattices as compact congruence semilattices of lattices (at object level)

Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that $\text{Con}_c L$, the $(\lor, 0)$-semilattice of all compact (=finitely generated) congruences of L, is isomorphic to D.
Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that $\text{Con}_c L$, the $(\lor, 0)$-semilattice of all compact (finitely generated) congruences of L, is isomorphic to D.

Question: Can the assignment $D \mapsto L$ be made functorial?
Distributive 0-lattices as compact congruence semilattices of lattices (at object level)

Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that $\text{Con}_c L$, the $(\lor, 0)$-semilattice of all compact (equivalently finitely generated) congruences of L, is isomorphic to D.

Question: Can the assignment $D \mapsto L$ be made functorial? Hence, in the above discussed functor-lifting settings,
Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that $\text{Con}_c L$, the $(\lor, 0)$-semilattice of all compact (=finitely generated) congruences of L, is isomorphic to D.

Question: Can the assignment $D \mapsto L$ be made functorial? Hence, in the above discussed functor-lifting settings,
- \mathcal{S} is the category of all $(\lor, 0)$-semilattices with $(\lor, 0)$-homomorphisms,
Distributive 0-lattices as compact congruence semilattices of lattices (at object level)

Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that $\text{Con}_c L$, the $(\vee, 0)$-semilattice of all compact (=finitely generated) congruences of L, is isomorphic to D.

Question: Can the assignment $D \mapsto L$ be made functorial? Hence, in the above discussed functor-lifting settings,

- S is the category of all $(\vee, 0)$-semilattices with $(\vee, 0)$-homomorphisms,
- A is the category of all distributive 0-lattices with 0-lattice embeddings,
Distributive 0-lattices as compact congruence semilattices of lattices (at object level)

Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that $\text{Con}_c L$, the $(\lor, 0)$-semilattice of all *compact* (=finitely generated) congruences of L, is isomorphic to D.

Question: Can the assignment $D \mapsto L$ be made *functorial*?

Hence, in the above discussed functor-lifting settings,

- \mathcal{S} is the category of all $(\lor, 0)$-semilattices with $(\lor, 0)$-homomorphisms,
- \mathcal{A} is the category of all distributive 0-lattices with 0-lattice embeddings,
- Φ is the inclusion functor $\mathcal{A} \hookrightarrow \mathcal{B}$,
Distributive 0-lattices as compact congruence semilattices of lattices (at object level)

Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that $\text{Con}_c L$, the $(\lor, 0)$-semilattice of all compact (finitely generated) congruences of L, is isomorphic to D.

Question: Can the assignment $D \mapsto L$ be made functorial? Hence, in the above discussed functor-lifting settings,

- \mathcal{S} is the category of all $(\lor, 0)$-semilattices with $(\lor, 0)$-homomorphisms,
- \mathcal{A} is the category of all distributive 0-lattices with 0-lattice embeddings,
- Φ is the inclusion functor $\mathcal{A} \hookrightarrow \mathcal{B}$,
- \mathcal{B} is the category of all lattices with lattice homomorphisms,
Theorem (Schmidt 1981)

For each distributive 0-lattice D, there exists a lattice L such that $\text{Con}_c L$, the $(\lor, 0)$-semilattice of all compact (=finitely generated) congruences of L, is isomorphic to D.

Question: Can the assignment $D \mapsto L$ be made functorial? Hence, in the above discussed functor-lifting settings,

- \mathcal{S} is the category of all $(\lor, 0)$-semilattices with $(\lor, 0)$-homomorphisms,
- \mathcal{A} is the category of all distributive 0-lattices with 0-lattice embeddings,
- Φ is the inclusion functor $\mathcal{A} \hookrightarrow \mathcal{B}$,
- \mathcal{B} is the category of all lattices with lattice homomorphisms,
- $\Psi: \mathcal{B} \to \mathcal{S}$, $L \mapsto \text{Con}_c L$ (naturally extended to homomorphisms).
Distributive 0-lattices as compact congruence semilattices of lattices (somewhat functorially...)
Distributive 0-lattices as compact congruence semilattices of lattices (somewhat functorially...)

Answer to the above question (Pudlák 1985)

Yes.
Distributive 0-lattices as compact congruence semilattices of lattices (somewhat functorially...)

Answer to the above question (Pudlák 1985)

Yes. Namely, there exists a functor

\[\Gamma : (\text{distr. 0-latt., 0-latt. emb.}) \to (\text{latt., latt. emb.}) \]
Distributive 0-lattices as compact congruence semilattices of lattices (somewhat functorially…)

Answer to the above question (Pudlák 1985)

Yes. Namely, there exists a functor

\[\Gamma : (\text{distr. 0-latt., 0-latt. emb.}) \rightarrow (\text{latt., latt. emb.}) \]

such that \(\text{Con}_c \Gamma(D) \cong D \) naturally for each distributive 0-lattice \(D \).
Distributive 0-lattices as compact congruence semilattices of lattices (somewhat functorially...)

Answer to the above question (Pudlák 1985)

Yes. Namely, there exists a functor

\[\Gamma : (\text{distr. 0-latt., 0-latt. emb.}) \rightarrow (\text{latt., latt. emb.}) \]

such that \(\text{Con}_c \Gamma(D) \cong D \) naturally for each distributive 0-lattice \(D \).

In fact, the functor \(\Gamma \) constructed in Pudlák's proof sends finite distributive lattices to finite atomistic lattices, and preserves directed colimits (\(= \) direct limits).
Distributive 0-lattices as compact congruence semilattices of lattices (...but not too functorially)

Question (Pudlák 1985)

Can this be done with \(\Gamma: (\text{distr. 0-semilatt.}, (\lor, 0))-\text{embeddings} \rightarrow (\text{latt.}, \text{latt. emb.}) \)?

(\text{Note: there is no hope with } \Gamma: (\text{distr. 0-semilatt.}, (\lor, 0))-\text{homomorphisms} \rightarrow (\text{latt.}, \text{latt. hom.}), \text{for "trivial" reasons.})

\text{Answer (T˚ uma and W., 2006)}

No, it cannot. (For nontrivial reasons, that can be extended to any variety with a nontrivial congruence \((\lor, \land) \)-identity.)
Distributive 0-lattices as compact congruence semilattices of lattices (...but not too functorially)

Question (Pudlák 1985)
Can this be done with
Distributive 0-lattices as compact congruence semilattices of lattices (... but not too functorially)

Question (Pudlák 1985)

Can this be done with

\[\Gamma : (\text{distr. 0-semilatt.}, (\lor, 0)\text{-embeddings}) \rightarrow (\text{latt., latt. emb.}) \]
Distributive 0-lattices as compact congruence semilattices of lattices (... but not too functorially)

Question (Pudlák 1985)

Can this be done with

\[\Gamma: (\text{distr. 0-semilatt.}, (\vee, 0)\text{-embeddings}) \rightarrow (\text{latt.}, \text{latt. emb.}) \]

?

(Note: there is no hope with \(\Gamma: (\text{distr. 0-semilatt.}, (\vee, 0)\text{-homomorphisms}) \rightarrow (\text{latt.}, \text{latt. hom.}), \) for “trivial” reasons.)
Distributive 0-lattices as compact congruence semilattices of lattices (...but not too functorially)

Question (Pudlák 1985)

Can this be done with

\[\Gamma : \text{(distr. 0-semilatt., } (\lor, 0)\text{-embeddings)} \rightarrow (\text{latt., latt. emb.}) \]

?

(Note: there is no hope with

\[\Gamma : \text{(distr. 0-semilatt., } (\lor, 0)\text{-homomorphisms)} \rightarrow (\text{latt., latt. hom.}), \]

for “trivial” reasons.)

Answer (Tůma and W., 2006)
Question (Pudlák 1985)

Can this be done with

\[\Gamma : (\text{distr. 0-semilatt.}, (\lor, 0)\text{-embeddings}) \rightarrow (\text{latt.}, \text{latt. emb.}) \]

\[? \]

\((\text{Note: there is no hope with} \)
\[\Gamma : (\text{distr. 0-semilatt.}, (\lor, 0)\text{-homomorphisms}) \rightarrow (\text{latt.}, \text{latt. hom.}), \]
for “trivial” reasons.\)

Answer (Tůma and W., 2006)

No, it cannot.
Distributive 0-lattices as compact congruence semilattices of lattices (...but not too functorially)

Question (Pudlák 1985)

Can this be done with

\[\Gamma: (\text{distr. 0-semilatt.}, (\vee, 0)\text{-embeddings}) \rightarrow (\text{latt.}, \text{latt. emb.}) \]

(Note: there is no hope with
\[\Gamma: (\text{distr. 0-semilatt.}, (\vee, 0)\text{-homomorphisms}) \rightarrow (\text{latt.}, \text{latt. hom.}), \]
for “trivial” reasons.)

Answer (Tůma and W., 2006)

No, it cannot. (For nontrivial reasons, that can be extended to any variety with a nontrivial congruence \((\vee, \wedge)\text{-identity.}\)
An algebra R over a field F is
Distributive 0-lattices as compact ideal semilattices of locally matricial algebras (at object level)

An algebra R over a field F is

- **matricial**, if $R \cong \prod_{i=1}^{m} F^{n_i \times n_i}$ (direct product of matrix rings), for positive integers n_1, \ldots, n_m.
An algebra R over a field F is

- **matricial**, if $R \cong \prod_{i=1}^{m} F^{n_i \times n_i}$ (direct product of matrix rings), for positive integers n_1, \ldots, n_m.

- **locally matricial**, if R is a directed colimit (direct limit) of matricial algebras.
An algebra R over a field F is

- **matricial**, if $R \cong \prod_{i=1}^{m} F^{n_i \times n_i}$ (direct product of matrix rings), for positive integers n_1, \ldots, n_m.
- **locally matricial**, if R is a directed colimit (i.e., direct limit) of matricial algebras.

Theorem (Růžička 2004)
An algebra R over a field F is

- **matricial**, if $R \cong \prod_{i=1}^{m} F^{n_i \times n_i}$ (direct product of matrix rings), for positive integers n_1, \ldots, n_m.
- **locally matricial**, if R is a directed colimit (direct limit) of matricial algebras.

Theorem (Růžička 2004)

For each field F and each distributive 0-lattice D,
Distributive 0-lattices as compact ideal semilattices of locally matricial algebras (at object level)

An algebra R over a field F is

- **matricial**, if $R \cong \prod_{i=1}^{m} F^{n_i \times n_i}$ (direct product of matrix rings), for positive integers n_1, \ldots, n_m.
- **locally matricial**, if R is a directed colimit (=direct limit) of matricial algebras.

Theorem (Růžička 2004)

For each field F and each distributive 0-lattice D, there exists a locally matricial F-algebra R such that $\text{Id}_c R$, the $(\lor, 0)$-semilattice of all *compact* (=finitely generated) *two-sided ideals* of R, is isomorphic to D.

- **General settings**
- **P-scaled algebras**
- **Lifters, larders, and CLL**
- **Diagram form of GS**
- **Relative critical points**
- **Non-coordinatizable SCMLs**
- **Lattices without CPCP-extension**
Question: Can the assignment $D \mapsto R$ be made functorial?
Distributive 0-lattices as compact ideal semilattices of locally matricial algebras (somewhat functorially)

Question: Can the assignment $D \mapsto R$ be made *functorial*? It cannot be (distr. 0-latt., 0-latt. hom.) \rightarrow (F-alg., F-alg. hom.) (easy to see). However,
Question: Can the assignment $D \mapsto R$ be made *functorial*?

It cannot be $(\text{distr. 0-latt., o-latt. hom.}) \rightarrow (\text{F-alg., F-alg. hom.})$ (*easy to see*). However,

Theorem (Růžička 2006)

The assignment $D \mapsto R$ can be made functorial $(\text{distr. 0-latt., o-latt. emb.}) \rightarrow (\text{F-alg., F-alg. hom.})$.

Due to the link between K-theory of regular rings and congruence lattices of lattices, Růžička's result extends Schmidt's result.
Distributive 0-lattices as compact ideal semilattices of locally matricial algebras (somewhat functorially)

Question: Can the assignment $D \mapsto R$ be made *functorial*? It cannot be (distr. 0-latt., 0-latt. hom.) $\rightarrow (F$-alg., F-alg. hom.) (easy to see). However,

Theorem (Růžička 2006)

The assignment $D \mapsto R$ can be made functorial (distr. 0-latt., 0-latt. emb.) $\rightarrow (F$-alg., F-alg. hom.).

Due to the link between K-theory of regular rings and congruence lattices of lattices, Růžička’s result extends Schmidt’s result.
For varieties \mathcal{A} and \mathcal{B} of algebras (not necessarily over the same similarity type), we set
Critical points between varieties of algebras

For varieties \mathcal{A} and \mathcal{B} of algebras (not necessarily over the same similarity type), we set

$$\text{Con}_c \mathcal{A} := \{ S \mid (\exists A \in \mathcal{A}) (S \cong \text{Con}_c A) \};$$
For varieties \mathcal{A} and \mathcal{B} of algebras (not necessarily over the same similarity type), we set

- $\text{Con}_c \mathcal{A} := \{ S \mid (\exists A \in \mathcal{A})(S \cong \text{Con}_c A)\}$;
- $\text{crit}(\mathcal{A}; \mathcal{B}) := \text{least cardinality of a member of } (\text{Con}_c \mathcal{A}) \setminus (\text{Con}_c \mathcal{B}) \text{ if it exists, } \infty \text{ otherwise.}$
Critical points between varieties of algebras

For varieties \mathcal{A} and \mathcal{B} of algebras (not necessarily over the same similarity type), we set

- $\text{Con}_c \mathcal{A} := \{ S \mid (\exists A \in \mathcal{A})(S \cong \text{Con}_c A)\};$
- $\text{crit}(\mathcal{A}; \mathcal{B}) := \text{least cardinality of a member of } (\text{Con}_c \mathcal{A}) \setminus (\text{Con}_c \mathcal{B}) \text{ if it exists, } \infty \text{ otherwise.}$

Theorem (Gillibert 2008)
Critical points between varieties of algebras

For varieties \mathcal{A} and \mathcal{B} of algebras (not necessarily over the same similarity type), we set

- $\text{Con}_c \mathcal{A} := \{ S \mid (\exists A \in \mathcal{A})(S \cong \text{Con}_c A)\}$;
- $\text{crit}(\mathcal{A}; \mathcal{B}) := \text{least cardinality of a member of } (\text{Con}_c \mathcal{A}) \setminus (\text{Con}_c \mathcal{B}) \text{ if it exists, } \infty \text{ otherwise.}$

Theorem (Gillibert 2008)

Let \mathcal{A} be a locally finite variety and let \mathcal{B} be a finitely generated congruence-distributive variety. Then $\text{Con}_c \mathcal{A} \not\subseteq \text{Con}_c \mathcal{B}$ implies that $\text{crit}(\mathcal{A}; \mathcal{B}) < \aleph_\omega$.
Critical points between varieties of algebras

For varieties \mathcal{A} and \mathcal{B} of algebras (not necessarily over the same similarity type), we set

- $\text{Con}_c \mathcal{A} := \{ S \mid (\exists A \in \mathcal{A})(S \cong \text{Con}_c A)\}$;
- $\text{crit}(\mathcal{A}; \mathcal{B}) := \text{least cardinality of a member of } (\text{Con}_c \mathcal{A}) \setminus (\text{Con}_c \mathcal{B}) \text{ if it exists}, \infty \text{ otherwise.}$

Theorem (Gillibert 2008)

Let \mathcal{A} be a locally finite variety and let \mathcal{B} be a finitely generated congruence-distributive variety. Then $\text{Con}_c \mathcal{A} \not\subseteq \text{Con}_c \mathcal{B}$ implies that $\text{crit}(\mathcal{A}; \mathcal{B}) < \aleph_\omega$.

Whether all \aleph_n can be thus reached (for finite similarity types) is a difficult open problem.
Critical points between varieties of algebras

For varieties \mathcal{A} and \mathcal{B} of algebras (not necessarily over the same similarity type), we set

- $\text{Con}_c \mathcal{A} := \{ S \mid (\exists A \in \mathcal{A})(S \cong \text{Con}_c A) \}$;
- $\text{crit}(\mathcal{A}; \mathcal{B}) := \text{least cardinality of a member of } (\text{Con}_c \mathcal{A}) \setminus (\text{Con}_c \mathcal{B}) \text{ if it exists, } \infty \text{ otherwise.}$

Theorem (Gillibert 2008)

Let \mathcal{A} be a locally finite variety and let \mathcal{B} be a finitely generated congruence-distributive variety. Then $\text{Con}_c \mathcal{A} \not\subseteq \text{Con}_c \mathcal{B}$ implies that $\text{crit}(\mathcal{A}; \mathcal{B}) < \aleph_\omega$.

Whether all \aleph_n can be thus reached (for finite similarity types) is a difficult open problem. (However, some partial results are known.)
A ring (associative, not necessarily unital) R is (von Neumann) regular, if $(\forall x \in R)(\exists y \in R)(xyx = x)$.
Larders and CLL

- A ring (associative, not necessarily unital) R is (von Neumann) **regular**, if $(\forall x \in R)(\exists y \in R)(xyx = x)$.
- For a ring R, set $\mathbb{L}(R) := \{xR \mid x \in R\}$.
A ring (associative, not necessarily unital) R is (von Neumann) regular, if $(\forall x \in R)(\exists y \in R)(xyx = x)$.

For a ring R, set $\mathbb{L}(R) := \{ xR \mid x \in R \}$.

For $R := \mathbb{Z}[\sqrt{-5}]$, the poset $(\mathbb{L}(R), \subseteq)$ is not a lattice.
Lattices of right ideals of von Neumann regular rings

- A ring (associative, not necessarily unital) R is (von Neumann) regular, if $(\forall x \in R)(\exists y \in R)(xyx = x)$.
- For a ring R, set $\mathbb{L}(R) := \{ xR \mid x \in R \}$.
- For $R := \mathbb{Z}[\sqrt{-5}]$, the poset $(\mathbb{L}(R), \subseteq)$ is not a lattice.
- If R is regular, then $\mathbb{L}(R)$ is a sectionally complemented sublattice of the right ideal lattice of R. In particular, it is modular (even Arguesian).
A ring (associative, not necessarily unital) \(R \) is (von Neumann) regular, if \((\forall x \in R)(\exists y \in R)(xyx = x)\).

For a ring \(R \), set \(\mathbb{L}(R) := \{xR \mid x \in R\} \).

For \(R := \mathbb{Z}[^{\sqrt{-5}}] \), the poset \((\mathbb{L}(R), \subseteq) \) is not a lattice.

If \(R \) is regular, then \(\mathbb{L}(R) \) is a sectionally complemented sublattice of the right ideal lattice of \(R \). In particular, it is modular (even Arguesian).

For a homomorphism \(f : R \to S \) of regular rings, the map \(\mathbb{L}(f) : \mathbb{L}(R) \to \mathbb{L}(S), I \mapsto f(I)S \) is a 0-lattice homomorphism. The functor \(\mathbb{L} \) thus defined preserves directed colimits (=direct limits).
Lattices of right ideals of von Neumann regular rings

- A ring (associative, not necessarily unital) R is (von Neumann) **regular**, if $(\forall x \in R)(\exists y \in R)(xyx = x)$.

- For a ring R, set $\mathbb{L}(R) := \{xR \mid x \in R\}$.

- For $R := \mathbb{Z}[\sqrt{-5}]$, the poset $(\mathbb{L}(R), \subseteq)$ is not a lattice.

- If R is regular, then $\mathbb{L}(R)$ is a sectionally complemented sublattice of the right ideal lattice of R. In particular, it is modular (even Arguesian).

- For a homomorphism $f : R \to S$ of regular rings, the map $\mathbb{L}(f) : \mathbb{L}(R) \to \mathbb{L}(S), I \mapsto f(I)S$ is a 0-lattice homomorphism. The functor \mathbb{L} thus defined preserves directed colimits (\Rightarrow direct limits).

- A lattice is **coordinatizable**, if it is isomorphic to $\mathbb{L}(R)$ for some regular ring R.
Non-coordinatizable 2-distributive lattices

The identity of 2-distributivity:

\[x \land (y_0 \lor y_1 \lor y_2) = (x \land (y_0 \lor y_1)) \lor (x \land (y_0 \lor y_2)) \lor (x \land (y_1 \lor y_2)). \]
Non-coordinatizable 2-distributive lattices

The identity of 2-distributivity:

\[x \land (y_0 \lor y_1 \lor y_2) = (x \land (y_0 \lor y_1)) \lor (x \land (y_0 \lor y_2)) \lor (x \land (y_1 \lor y_2)) \).

\[M_\omega := \{0, 1, a_0, a_1, a_2, \ldots \}, \text{ all } a_i \text{ atoms, is 2-distributive.} \]
Non-coordinatizable 2-distributive lattices

The identity of 2-distributivity:

\[x \wedge (y_0 \lor y_1 \lor y_2) = (x \wedge (y_0 \lor y_1)) \lor (x \wedge (y_0 \lor y_2)) \lor (x \wedge (y_1 \lor y_2)). \]

\[M_\omega := \{0, 1, a_0, a_1, a_2, \ldots \}, \text{ all } a_i \text{ atoms, is 2-distributive.} \]

A spanning \(M_\omega \) in a bounded lattice \(L \) is a \(0, 1 \)-sublattice of \(L \) isomorphic to \(M_\omega \).
Non-coordinatizable 2-distributive lattices

The identity of 2-distributivity:

\[x \land (y_0 \lor y_1 \lor y_2) = (x \land (y_0 \lor y_1)) \lor (x \land (y_0 \lor y_2)) \lor (x \land (y_1 \lor y_2)). \]

\(M_\omega := \{0, 1, a_0, a_1, a_2, \ldots \} \), all \(a_i \) atoms, is 2-distributive. A spanning \(M_\omega \) in a bounded lattice \(L \) is a 0, 1-sublattice of \(L \) isomorphic to \(M_\omega \).

Theorem (W., 2006)
Non-coordinatizable 2-distributive lattices

The identity of 2-distributivity:

\[x \land (y_0 \lor y_1 \lor y_2) = (x \land (y_0 \lor y_1)) \lor (x \land (y_0 \lor y_2)) \lor (x \land (y_1 \lor y_2)) \].

Let \(M_\omega := \{0, 1, a_0, a_1, a_2, \ldots \} \), all \(a_i \) atoms, be 2-distributive. A spanning \(M_\omega \) in a bounded lattice \(L \) is a 0, 1-sublattice of \(L \) isomorphic to \(M_\omega \).

Theorem (W., 2006)

- Every **countable**, 2-distributive complemented modular lattice with a spanning \(M_\omega \) is coordinatizable.
Non-coordinatizable 2-distributive lattices

The identity of 2-distributivity:

\[x \land (y_0 \lor y_1 \lor y_2) = (x \land (y_0 \lor y_1)) \lor (x \land (y_0 \lor y_2)) \lor (x \land (y_1 \lor y_2)) . \]

\[M_\omega := \{0, 1, a_0, a_1, a_2, \ldots \} , \text{ all } a_i \text{ atoms, is 2-distributive.} \]

A spanning \(M_\omega \) in a bounded lattice \(L \) is a 0, 1-sublattice of \(L \) isomorphic to \(M_\omega \).

Theorem (W., 2006)

- Every countable, 2-distributive complemented modular lattice with a spanning \(M_\omega \) is coordinatizable.
- The 0, 1-lattice embedding \(\varphi : M_\omega \hookrightarrow M_\omega, a_n \mapsto a_{n+1} \) cannot be lifted with respect to the functor \(\mathbb{L} \).
Non-coordinatizable 2-distributive lattices

The identity of 2-distributivity:

\[x \wedge (y_0 \vee y_1 \vee y_2) = (x \wedge (y_0 \vee y_1)) \vee (x \wedge (y_0 \vee y_2)) \vee (x \wedge (y_1 \vee y_2)). \]

\[M_\omega := \{0, 1, a_0, a_1, a_2, \ldots \}, \text{ all } a_i \text{ atoms, is 2-distributive.} \]

A spanning \(M_\omega \) in a bounded lattice \(L \) is a 0, 1-sublattice of \(L \) isomorphic to \(M_\omega \).

Theorem (W., 2006)

- Every **countable**, 2-distributive complemented modular lattice with a spanning \(M_\omega \) is coordinatizable.
- The 0, 1-lattice embedding \(\varphi : M_\omega \hookrightarrow M_\omega, \ a_n \mapsto a_{n+1} \) cannot be lifted with respect to the functor \(\mathbb{I} \).
- There exists a non-coordinatizable 2-distributive complemented modular lattice, of cardinality \(\mathcal{K}_1 \), with a spanning \(M_\omega \).
Non-coordinatizable 2-distributive lattices

The identity of 2-distributivity:

\[x \land (y_0 \lor y_1 \lor y_2) = (x \land (y_0 \lor y_1)) \lor (x \land (y_0 \lor y_2)) \lor (x \land (y_1 \lor y_2)). \]

\[M_\omega := \{0, 1, a_0, a_1, a_2, \ldots \}, \text{ all } a_i \text{ atoms, is 2-distributive.} \]

A spanning \(M_\omega \) in a bounded lattice \(L \) is a 0, 1-sublattice of \(L \) isomorphic to \(M_\omega \).

Theorem (W., 2006)

- Every **countable**, 2-distributive complemented modular lattice with a spanning \(M_\omega \) is coordinatizable.

- The 0, 1-lattice embedding \(\varphi: M_\omega \hookrightarrow M_\omega, a_n \mapsto a_{n+1} \) cannot be lifted with respect to the functor \(\mathbb{L} \).

- There exists a non-coordinatizable 2-distributive complemented modular lattice, of cardinality \(\aleph_1 \), with a spanning \(M_\omega \). In particular, coordinatizability is not first-order.
An **ideal** of a poset P is a nonempty, upward directed lower subset of P. Denote by $\text{Id} P$ the set of all ideals of P, ordered by containment.
P-normed topological spaces

An **ideal** of a poset P is a nonempty, upward directed lower subset of P. Denote by $\text{Id} P$ the set of all ideals of P, ordered by containment.

Definition (Gillibert and W., 2009)

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Non-coordinatizable SCMLs

Lattices without CPCP-extension
A \textbf{P-normed (topological) space} is a pair $X = (X, \nu)$, where X is a topological space, $\nu: X \rightarrow \text{Id } P$, and the subset $\{x \in X \mid p \in \nu(x)\}$ is open in X, for each $p \in P$.

An \textbf{ideal} of a poset P is a nonempty, upward directed lower subset of P. Denote by $\text{Id } P$ the set of all ideals of P, ordered by containment.
P-normed topological spaces

An **ideal** of a poset P is a nonempty, upward directed lower subset of P. Denote by $\text{Id} P$ the set of all ideals of P, ordered by containment.

Definition (Gillibert and W., 2009)

A *P-normed (topological) space* is a pair $X = (X, \nu)$, where X is a topological space, $\nu: X \rightarrow \text{Id} P$, and the subset $\{x \in X \mid p \in \nu(x)\}$ is open in X, for each $p \in P$.

- Write $\|x\|$, or $\|x\|_X$, instead of $\nu(x)$.

- **BTop** P := category of all P-normed Boolean spaces with morphisms as above.

A description of the dual category follows.
A **P-normed (topological) space** is a pair $X = (X, \nu)$, where X is a topological space, $\nu: X \to \text{Id} \, P$, and the subset $\{x \in X \mid p \in \nu(x)\}$ is open in X, for each $p \in P$.

- Write $\|x\|$, or $\|x\|_X$, instead of $\nu(x)$.
- For P-normed spaces X and Y, a **morphism** $X \to Y$ is a continuous map $f: X \to Y$ such that $\|f(x)\|_Y \subseteq \|x\|_X$ for each $x \in X$.

Definition (Gillibert and W., 2009)

An **ideal** of a poset P is a nonempty, upward directed lower subset of P. Denote by $\text{Id} \, P$ the set of all ideals of P, ordered by containment.
P-normed topological spaces

An **ideal** of a poset P is a nonempty, upward directed lower subset of P. Denote by $\text{Id} P$ the set of all ideals of P, ordered by containment.

Definition (Gillibert and W., 2009)

A **P-normed (topological) space** is a pair $X = (X, \nu)$, where X is a topological space, $\nu : X \rightarrow \text{Id} P$, and the subset $\{x \in X \mid p \in \nu(x)\}$ is open in X, for each $p \in P$.

- Write $\|x\|$, or $\|x\|_X$, instead of $\nu(x)$.
- For P-normed spaces X and Y, a **morphism** $X \rightarrow Y$ is a continuous map $f : X \rightarrow Y$ such that $\|f(x)\|_Y \subseteq \|x\|_X$ for each $x \in X$.
- $\mathbf{BTop}_P :=$ category of all P-normed **Boolean** spaces with morphisms as above.
P-normed topological spaces

An **ideal** of a poset P is a nonempty, upward directed lower subset of P. Denote by $\text{Id} P$ the set of all ideals of P, ordered by containment.

Definition (Gillibert and W., 2009)

A **P-normed (topological) space** is a pair $\mathbf{X} = (X, \nu)$, where X is a topological space, $\nu : X \to \text{Id} P$, and the subset $\{x \in X \mid p \in \nu(x)\}$ is open in X, for each $p \in P$.

- Write $\|x\|$, or $\|x\|_X$, instead of $\nu(x)$.
- For P-normed spaces \mathbf{X} and \mathbf{Y}, a **morphism** $\mathbf{X} \to \mathbf{Y}$ is a continuous map $f : X \to Y$ such that $\|f(x)\|_Y \subseteq \|x\|_X$ for each $x \in X$.
- $\mathbf{BTop}_P := \text{category of all } P\text{-normed } \text{Boolean } \text{spaces with morphisms as above}$.

A description of the dual category follows.
Fix a poset \(P \).
Fix a poset P.

Definition (Gillibert and W., 2009)

A P-scaled Boolean algebra is a structure $A = (A, (A(p)|p \in P))$, where A is a Boolean algebra, each $A(p)$ is an ideal of A, and $\bigvee (A(p)|p \in P)$ in $\text{Id} A$; $A(p) \cap A(q) = \bigvee (A(r)|r \geq p, q)$ for all $p, q \in P$.

For P-scaled Boolean algebras A and B, a morphism from A to B is a homomorphism $f: A \rightarrow B$ of Boolean algebras such that $f(A(p)) \subseteq B(p)$ for each $p \in P$.

Denote by Bool_P the category of all P-scaled Boolean algebras with above described morphisms.
P-scaled Boolean algebras

Fix a poset P.

Definition (Gillibert and W., 2009)

- A P-scaled Boolean algebra is a structure
 \[
 A = (A, (A^{(p)} \mid p \in P)),
 \]
 where A is a Boolean algebra, each $A^{(p)}$ is an ideal of A, and
 1. $A = \bigvee (A^{(p)} \mid p \in P)$ in $\text{Id} A$;
 2. $A^{(p)} \cap A^{(q)} = \bigvee (A^{(r)} \mid r \geq p, q)$ for all $p, q \in P$.

Fix a poset P.

Definition (Gillibert and W., 2009)

- A P-scaled Boolean algebra is a structure

$$A = (A, (A^{(p)} | p \in P)),$$

where A is a Boolean algebra, each $A^{(p)}$ is an ideal of A, and

1. $A = \bigvee (A^{(p)} | p \in P)$ in $\text{Id} A$;
2. $A^{(p)} \cap A^{(q)} = \bigvee (A^{(r)} | r \geq p, q)$ for all $p, q \in P$.

- For P-scaled Boolean algebras A and B, a morphism from A to B is a homomorphism $f : A \rightarrow B$ of Boolean algebras such that $f(A^{(p)}) \subseteq B^{(p)}$ for each $p \in P$.

P-scaled Boolean algebras
Fix a poset P.

Definition (Gillibert and W., 2009)

- A P-scaled Boolean algebra is a structure

 $$A = \left(A, \left(A^{(p)} \mid p \in P \right) \right),$$

 where A is a Boolean algebra, each $A^{(p)}$ is an ideal of A, and

 1. $A = \bigvee (A^{(p)} \mid p \in P)$ in $\text{Id} A$;
 2. $A^{(p)} \cap A^{(q)} = \bigvee (A^{(r)} \mid r \geq p, q)$ for all $p, q \in P$.

- For P-scaled Boolean algebras A and B, a morphism from A to B is a homomorphism $f : A \to B$ of Boolean algebras such that $f(A^{(p)}) \subseteq B^{(p)}$ for each $p \in P$.

- Denote by Bool_P the category of all P-scaled Boolean algebras with above described morphisms.
For a P-scaled Boolean algebra A, we set
\[
\|a\| := \{ p \in P \mid a \cap A(p) \neq \emptyset \}, \quad \text{for each } a \in \text{Ult } A.
\]
Duality between \mathbf{BTop}_P and \mathbf{Bool}_P

- For a P-scaled Boolean algebra \mathbf{A}, we set
 $$\|a\| := \{p \in P \mid a \cap A^{(p)} \neq \emptyset\}, \quad \text{for each } a \in \text{Ult } \mathbf{A}.$$

- $\|a\|$ is an ideal of P, and $a \mapsto \|a\|$ is a P-norm on $\text{Ult } \mathbf{A}$.
Duality between \mathbf{BTop}_P and \mathbf{Bool}_P

- For a P-scaled Boolean algebra A, we set
 \[\|a\| := \{ p \in P \mid a \cap A(p) \neq \emptyset \}, \quad \text{for each } a \in \text{Ult } A. \]

- $\|a\|$ is an ideal of P, and $a \mapsto \|a\|$ is a P-norm on Ult A.
- Denote by Ult A the P-normed Boolean space thus constructed.
Duality between \mathbf{BTop}_P and \mathbf{Bool}_P

- For a P-scaled Boolean algebra A, we set

 $$\|a\| := \{p \in P \mid a \cap A^{(p)} \neq \emptyset\}, \text{ for each } a \in \text{Ult} A.$$

- $\|a\|$ is an ideal of P, and $a \mapsto \|a\|$ is a P-norm on $\text{Ult} A$.
- Denote by $\text{Ult} A$ the P-normed Boolean space thus constructed.
- For a P-normed space X and $A := \text{Clop} X$, we set

 $$A^{(p)} := \{U \in \text{Clop} X \mid (\forall x \in U)(p \in \|x\|)\}, \text{ for each } p \in P.$$
Duality between BTop_P and Bool_P

- For a P-scaled Boolean algebra A, we set

$$\|a\| := \{p \in P \mid a \cap A^{(p)} \neq \emptyset\}, \text{ for each } a \in \text{Ult } A.$$

- $\|a\|$ is an ideal of P, and $a \mapsto \|a\|$ is a P-norm on $\text{Ult } A$.

- Denote by $\text{Ult } A$ the P-normed Boolean space thus constructed.

- For a P-normed space X and $A := \text{Clop } X$, we set

$$A^{(p)} := \{U \in \text{Clop } X \mid (\forall x \in U)(p \in \|x\|)\}, \text{ for each } p \in P.$$

- The structure $\text{Clop } X := (A, (A^{(p)} \mid p \in P))$ is a P-scaled Boolean algebra.
Let P be a poset.
Let P be a poset.

Proposition (Gillibert and W., 2009)

The pair $(\text{Ult}_P, \text{Clop})$ defines a duality between the category BTop_P of all P-normed Boolean spaces and the category Bool_P of all P-scaled Boolean algebras.

Proposition (Gillibert and W., 2009)

The category Bool_P has all nonempty small directed colimits.

The category Bool_P has all nonempty finite products. Furthermore, if P is finite, then Bool_P has all nonempty small products.
Let P be a poset.

Proposition (Gillibert and W., 2009)

The pair $(\text{Ult}, \text{Clop})$ defines a duality between the category \mathbf{BTop}_P of all P-normed Boolean spaces and the category \mathbf{Bool}_P of all P-scaled Boolean algebras.
Basic categorical properties of \mathbf{BTop}_P and \mathbf{Bool}_P

Let P be a poset.

Proposition (Gillibert and W., 2009)

The pair $(\text{Ult}, \text{Clop})$ defines a duality between the category \mathbf{BTop}_P of all P-normed Boolean spaces and the category \mathbf{Bool}_P of all P-scaled Boolean algebras.

Proposition (Gillibert and W., 2009)

The category \mathbf{Bool}_P has all nonempty small directed colimits.

The category \mathbf{Bool}_P has all nonempty finite products.

Furthermore, if P is finite, then \mathbf{Bool}_P has all nonempty small products.
Let P be a poset.

Proposition (Gillibert and W., 2009)

The pair $(\text{Ult}, \text{Clop})$ defines a duality between the category BTop_P of all P-normed Boolean spaces and the category Bool_P of all P-scaled Boolean algebras.

Proposition (Gillibert and W., 2009)

- The category Bool_P has all nonempty small directed colimits.
Let P be a poset.

Proposition (Gillibert and W., 2009)

The pair $(\text{Ult}, \text{Clop})$ defines a duality between the category BTop_P of all P-normed Boolean spaces and the category Bool_P of all P-scaled Boolean algebras.

Proposition (Gillibert and W., 2009)

- The category Bool_P has all nonempty small directed colimits.
- The category Bool_P has all nonempty finite products.
Let P be a poset.

Proposition (Gillibert and W., 2009)

The pair $(\text{Ult}, \text{Clop})$ defines a duality between the category \mathbf{BTop}_P of all P-normed Boolean spaces and the category \mathbf{Bool}_P of all P-scaled Boolean algebras.

Proposition (Gillibert and W., 2009)

- The category \mathbf{Bool}_P has all nonempty small directed colimits.
- The category \mathbf{Bool}_P has all nonempty finite products. Furthermore, if P is finite, then \mathbf{Bool}_P has all nonempty small products.
Finitely presented objects in a category

Definition (Gabriel and Ulmer 1971)

An object A in a category C is finitely presented, if for every directed colimit representation $(X_i, x_{i|j})_{i \in I} = \lim_{\rightarrow} (X_i, x_{j|i})_{i \leq j \in I}$ in C, $\forall f: A \to X_i$, $\exists i \in I$ such that f factors through X_i; $\forall i \in I$ and $\forall f, g: A \to X_i$, $x_{i|i} \circ f = x_{i|i} \circ g \Rightarrow (\exists j \geq i) (x_{j|i} \circ f = x_{j|i} \circ g)$.

For example, an element in a poset is finitely presented iff it is compact.
Finitely presented objects in a category

Definition (Gabriel and Ulmer 1971)

An object A in a category \mathcal{C} is **finitely presented**, if for every directed colimit representation

$$(X, x_i \mid i \in I) = \lim_{\longrightarrow}(X_i, x_i^j \mid i \leq j \text{ in } I) \quad \text{in } \mathcal{C},$$

For example, an element in a poset is finitely presented iff it is compact.
Finitely presented objects in a category

Definition (Gabriel and Ulmer 1971)

An object A in a category C is **finitely presented**, if for every directed colimit representation

$$(X, x_i \mid i \in I) = \lim_{\to}(X_i, x_i^j \mid i \leq j \text{ in } I) \text{ in } C,$$

1. $\forall f : A \to X$, $\exists i \in I$ such that f factors through X_i;
2. $\forall i \in I$ and $\forall f, g : A \to X_i$, $x_i \circ f = x_i \circ g \Rightarrow (\exists j \geq i)(x_i^j \circ f = x_i^j \circ g)$.
Finitely presented objects in a category

Definition (Gabriel and Ulmer 1971)

An object A in a category \mathcal{C} is finitely presented, if for every directed colimit representation

$$(X, x_i \mid i \in I) = \underleftarrow{\lim}(X_i, x_i^j \mid i \leq j \text{ in } I) \text{ in } \mathcal{C},$$

1. $\forall f : A \to X$, $\exists i \in I$ such that f factors through X_i;
2. $\forall i \in I$ and $\forall f, g : A \to X_i$, $x_i \circ f = x_i \circ g \Rightarrow (\exists j \geq i)(x_i^j \circ f = x_i^j \circ g)$.

For example, an element in a poset is finitely presented iff it is compact.
Finitely presented objects in Bool_P

Proposition (Gillibert and W., 2009)

A P-scaled Boolean algebra A is finitely presented in Bool_P if and only if A is finite and $\|a\|$ is a principal ideal for each ultrafilter a of A.

Every P-scaled Boolean algebra is a monomorphic directed colimit of finitely presented P-scaled Boolean algebras.
Finitely presented objects in Bool_P

Proposition (Gillibert and W., 2009)

A P-scaled Boolean algebra A is finitely presented in Bool_P iff A is finite and $\|a\|$ is a principal ideal for each ultrafilter a of A.

$\text{Proposition (Gillibert and W., 2009)}$

A P-scaled Boolean algebra A is finitely presented in Bool_P iff A is finite and $\|a\|$ is a principal ideal for each ultrafilter a of A.

$\text{Proposition (Gillibert and W., 2009)}$
Finitely presented objects in Bool_P

Proposition (Gillibert and W., 2009)

A P-scaled Boolean algebra A is finitely presented in Bool_P iff A is finite and $\|a\|$ is a principal ideal for each ultrafilter α of A.

Proposition (Gillibert and W., 2009)
Finitely presented objects in Bool_P

Proposition (Gillibert and W., 2009)

A P-scaled Boolean algebra A is finitely presented in Bool_P iff A is finite and $\|a\|$ is a principal ideal for each ultrafilter a of A.

Proposition (Gillibert and W., 2009)

Every P-scaled Boolean algebra is a monomorphism directed colimit of finitely presented P-scaled Boolean algebras.
Normal morphisms of P-scaled Boolean algebras

Definition (Gillibert and W., 2009)

A morphism $f: A \rightarrow B$ of P-scaled Boolean algebras is normal, if it is surjective and $f(A(p)) = B(p)$ for each $p \in P$.

It is compact, if both A and B are finitely presented.

For an ideal I of A, one can define a P-scaled Boolean algebra A/I of underlying algebra A/I, with $(A/I)(p) = A(p)/I$ for each $p \in P$.

The projection map $A \rightarrow A/I$ is a normal morphism, and every normal morphism has this form (up to isomorphism).

The normal morphisms of Bool^P are exactly its regular epimorphisms (i.e., coequalizers of two morphisms).

Proposition (Gillibert and W., 2009)

Every normal morphism in Bool^P is a directed colimit of compact normal morphisms.
Normal morphisms of P-scaled Boolean algebras

Definition (Gillibert and W., 2009)

A morphism $f : A \to B$ of P-scaled Boolean algebras is **normal**, if it is surjective and $f(A^p) = B^p$ for each $p \in P$.
Normal morphisms of P-scaled Boolean algebras

Definition (Gillibert and W., 2009)

A morphism $f : A \to B$ of P-scaled Boolean algebras is **normal**, if it is surjective and $f(A^{(p)}) = B^{(p)}$ for each $p \in P$. It is **compact**, if both A and B are finitely presented.
Normal morphisms of P-scaled Boolean algebras

Definition (Gillibert and W., 2009)

A morphism $f : A \to B$ of P-scaled Boolean algebras is normal, if it is surjective and $f(A(p)) = B(p)$ for each $p \in P$. It is compact, if both A and B are finitely presented.

For an ideal I of A, one can define a P-scaled Boolean algebra A/I of underlying algebra A/I, with $(A/I)(p) = A(p)/I$ for each $p \in P$.
Normal morphisms of P-scaled Boolean algebras

Definition (Gillibert and W., 2009)

A morphism $f : A \rightarrow B$ of P-scaled Boolean algebras is **normal**, if it is surjective and $f(A(p)) = B(p)$ for each $p \in P$. It is **compact**, if both A and B are finitely presented.

For an ideal I of A, one can define a P-scaled Boolean algebra A/I of underlying algebra A/I, with $(A/I)(p) = A(p)/I$ for each $p \in P$. The projection map $A \rightarrow A/I$ is a normal morphism, and every normal morphism has this form (up to isomorphism).
Normal morphisms of P-scaled Boolean algebras

Definition (Gillibert and W., 2009)

A morphism $f : A \to B$ of P-scaled Boolean algebras is normal, if it is surjective and $f(A^p) = B^p$ for each $p \in P$. It is compact, if both A and B are finitely presented.

For an ideal I of A, one can define a P-scaled Boolean algebra A/I of underlying algebra A/I, with $(A/I)^p = A^p/I$ for each $p \in P$. The projection map $A \to A/I$ is a normal morphism, and every normal morphism has this form (up to isomorphism). The normal morphisms of Bool_P are exactly its regular epimorphisms (i.e., coequalizers of two morphisms).
Normal morphisms of P-scaled Boolean algebras

Definition (Gillibert and W., 2009)

A morphism $f : A \rightarrow B$ of P-scaled Boolean algebras is **normal**, if it is surjective and $f(A^{(p)}) = B^{(p)}$ for each $p \in P$. It is **compact**, if both A and B are finitely presented.

For an ideal I of A, one can define a P-scaled Boolean algebra A/I of underlying algebra A/I, with $(A/I)^{(p)} = A^{(p)}/I$ for each $p \in P$. The projection map $A \rightarrow A/I$ is a normal morphism, and every normal morphism has this form (up to isomorphism). The **normal morphisms** of Bool_P are exactly its **regular epimorphisms** (i.e., coequalizers of two morphisms).

Proposition (Gillibert and W., 2009)

Every normal morphism in Bool_P is a directed colimit of compact normal morphisms.
Normal morphisms of P-scaled Boolean algebras

Definition (Gillibert and W., 2009)

A morphism $f : A \to B$ of P-scaled Boolean algebras is normal, if it is surjective and $f(A^{(p)}) = B^{(p)}$ for each $p \in P$. It is compact, if both A and B are finitely presented.

For an ideal I of A, one can define a P-scaled Boolean algebra A/I of underlying algebra A/I, with $(A/I)^{(p)} = A^{(p)}/I$ for each $p \in P$. The projection map $A \to A/I$ is a normal morphism, and every normal morphism has this form (up to isomorphism). The normal morphisms of Bool_P are exactly its regular epimorphisms (i.e., coequalizers of two morphisms).

Proposition (Gillibert and W., 2009)

Every normal morphism in Bool_P is a directed colimit of compact normal morphisms.
Defining $A \otimes \vec{S}$ for A finitely presented

- Work in a category S with all nonempty finite products, and fix a poset P.

Let $\vec{S} = (S_p, \sigma_q | p \leq q \text{ in } P)$ be a P-indexed diagram in S.

Let A be a finitely presented P-scaled Boolean algebra.

For each atom u of A, denote by $|u|$ the largest $p \in P$ such that $u \in A(p)$.

Set $A \otimes \vec{S} := \prod (S_{|u|} | u \in \text{At}(A))$.

For a morphism $\phi : A \rightarrow B$ in Bool_P, one can define naturally a morphism $\phi \otimes \vec{S} : A \otimes \vec{S} \rightarrow B \otimes \vec{S}$ in S.

We get a S-valued functor $A \mapsto A \otimes \vec{S}$, defined on the finitely presented part of Bool_P.
Defining $A \otimes \vec{S}$ for A finitely presented

- Work in a category S with all nonempty finite products, and fix a poset P.
- Let $\vec{S} = (S_p, \sigma^q_p | p \leq q \text{ in } P)$ be a P-indexed diagram in S.

\[A \otimes \vec{S} := \prod (S_p, \sigma^q_p | u \in \text{At } A) \]

For a morphism $\phi: A \rightarrow B$ in Bool_P, one can define naturally a morphism $\phi \otimes \vec{S}: A \otimes \vec{S} \rightarrow B \otimes \vec{S}$ in S.

We get a S-valued functor $A \mapsto \rightarrow A \otimes \vec{S}$, defined on the finitely presented part of Bool_P.

Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Non-coordinatizable SCMLs

Lattices without CPCP-extension
Defining $A \otimes \vec{S}$ for A finitely presented

- Work in a category \mathcal{S} with all nonempty finite products, and fix a poset P.
- Let $\vec{S} = (S_p, \sigma_p^q \mid p \leq q \text{ in } P)$ be a P-indexed diagram in \mathcal{S}.
- Let A be a finitely presented P-scaled Boolean algebra. For each atom u of A, denote by $|u|$ the largest $p \in P$ such that $u \in A(p)$.
Defining $A \otimes \vec{S}$ for A finitely presented

- Work in a category S with all nonempty finite products, and fix a poset P.
- Let $\vec{S} = (S_p, \sigma_p^q \mid p \leq q \text{ in } P)$ be a P-indexed diagram in S.
- Let A be a finitely presented P-scaled Boolean algebra. For each atom u of A, denote by $|u|$ the largest $p \in P$ such that $u \in A(p)$.
- Set $A \otimes \vec{S} := \prod (S_{|u|} \mid u \in \text{At } A)$.

Defining $A \otimes \vec{S}$ for A finitely presented

- Work in a category S with all nonempty finite products, and fix a poset P.
- Let $\vec{S} = (S_p, \sigma^q_p | p \leq q$ in $P)$ be a P-indexed diagram in S.
- Let A be a finitely presented P-scaled Boolean algebra. For each atom u of A, denote by $|u|$ the largest $p \in P$ such that $u \in A(p)$.
- Set $A \otimes \vec{S} := \prod (S_{|u|} | u \in \text{At } A)$.
- For a morphism $\varphi : A \to B$ in Bool_P, one can define naturally a morphism $\varphi \otimes \vec{S} : A \otimes \vec{S} \to B \otimes \vec{S}$ in S.
Defining $A \otimes \vec{S}$ for A finitely presented

- Work in a category S with all nonempty finite products, and fix a poset P.
- Let $\vec{S} = (S_p, \sigma^q_p | p \leq q \text{ in } P)$ be a P-indexed diagram in S.
- Let A be a finitely presented P-scaled Boolean algebra. For each atom u of A, denote by $|u|$ the largest $p \in P$ such that $u \in A(p)$.
- Set $A \otimes \vec{S} := \prod (S_{|u|} | u \in \text{At } A)$.
- For a morphism $\varphi: A \rightarrow B$ in Bool_P, one can define naturally a morphism $\varphi \otimes \vec{S}: A \otimes \vec{S} \rightarrow B \otimes \vec{S}$ in S.
- We get a S-valued functor $A \mapsto A \otimes \vec{S}$, defined on the finitely presented part of Bool_P.
Defining $A \otimes \vec{S}$ in general

Let \mathcal{S} be a category with all nonempty finite products and all nonempty small directed colimits, and let \vec{S} be a P-indexed diagram in \mathcal{S}.
Defining $\mathbf{A} \otimes \vec{S}$ in general

Let S be a category with all nonempty finite products and all nonempty small directed colimits, and let \vec{S} be a P-indexed diagram in S.

Proposition (Gillibert and W., 2009)

The functor $\mathbf{A} \mapsto \mathbf{A} \otimes \vec{S}$ can be uniquely (up to iso) extended to a directed colimits preserving functor from $\mathsf{Bool} P$ to S. This way, $\mathbf{A} \otimes \vec{S}$ is defined for any $\mathbf{A} \in \mathsf{Bool} P$. Also $\phi \otimes \vec{S}$, for $\phi : \mathbf{A} \to \mathbf{B}$ in $\mathsf{Bool} P$. We say that $\mathbf{A} \otimes \vec{S}$ is a condensate of \vec{S}.

A projection in S is either an isomorphism or a factor morphism $X \times Y \to X$ in S. An extended projection is a directed colimit of projections (in S).

Proposition (Gillibert and W., 2009)

If a morphism $\phi : \mathbf{A} \to \mathbf{B}$ in $\mathsf{Bool} P$ is normal, then $\phi \otimes \vec{S}$ is an extended projection in S.
Defining $A \otimes \vec{S}$ in general

Let S be a category with all nonempty finite products and all nonempty small directed colimits, and let \vec{S} be a P-indexed diagram in S.

Proposition (Gillibert and W., 2009)

The functor $A \mapsto A \otimes \vec{S}$ can be uniquely (up to iso) extended to a directed colimits preserving functor from \mathbf{Bool}_P to S.

Let S be a category with all nonempty finite products and all nonempty small directed colimits, and let \vec{S} be a P-indexed diagram in S.

Proposition (Gillibert and W., 2009)

The functor $A \mapsto A \otimes \vec{S}$ can be uniquely (up to iso) extended to a directed colimits preserving functor from \mathbf{Bool}_P to S.

A projection in S is either an isomorphism or a factor morphism $X \times Y \rightarrow X$ in S. An extended projection is a directed colimit of projections (in S).
Defining $A \otimes \vec{S}$ in general

Let S be a category with all nonempty finite products and all nonempty small directed colimits, and let \vec{S} be a P-indexed diagram in S.

Proposition (Gillibert and W., 2009)

The functor $A \mapsto A \otimes \vec{S}$ can be uniquely (up to iso) extended to a directed colimits preserving functor from Bool_P to S.

This way, $A \otimes \vec{S}$ defined for any $A \in \text{Bool}_P$. Also $\varphi \otimes \vec{S}$, for $\varphi : A \to B$ in Bool_P. We say that $A \otimes \vec{S}$ is a **condensate** of \vec{S}.
Defining $A \otimes \tilde{S}$ in general

Let S be a category with all nonempty finite products and all nonempty small directed colimits, and let \tilde{S} be a P-indexed diagram in S.

Proposition (Gillibert and W., 2009)

The functor $A \mapsto A \otimes \tilde{S}$ can be uniquely (up to iso) extended to a directed colimits preserving functor from Bool_P to S.

This way, $A \otimes \tilde{S}$ defined for any $A \in \text{Bool}_P$. Also $\varphi \otimes \tilde{S}$, for $\varphi: A \rightarrow B$ in Bool_P. We say that $A \otimes \tilde{S}$ is a **condensate** of \tilde{S}. A projection in S is either an isomorphism or a factor morphism $X \times Y \rightarrow X$ in S. An extended projection is a directed colimit of projections (in S^2).
Defining $A \otimes \vec{S}$ in general

Let S be a category with all nonempty finite products and all nonempty small directed colimits, and let \vec{S} be a P-indexed diagram in S.

Proposition (Gillibert and W., 2009)

The functor $A \mapsto A \otimes \vec{S}$ can be uniquely (up to iso) extended to a directed colimits preserving functor from Bool_P to S.

This way, $A \otimes \vec{S}$ defined for any $A \in \text{Bool}_P$. Also $\varphi \otimes \vec{S}$, for $\varphi : A \to B$ in Bool_P. We say that $A \otimes \vec{S}$ is a condensate of \vec{S}. A projection in S is either an isomorphism or a factor morphism $X \times Y \to X$ in S. An extended projection is a directed colimit of projections (in S^2).

Proposition (Gillibert and W., 2009)
Let \mathcal{S} be a category with all nonempty finite products and all nonempty small directed colimits, and let \vec{S} be a P-indexed diagram in \mathcal{S}.

Proposition (Gillibert and W., 2009)

The functor $A \mapsto A \otimes \vec{S}$ can be uniquely (up to iso) extended to a directed colimits preserving functor from Bool_P to \mathcal{S}.

This way, $A \otimes \vec{S}$ defined for any $A \in \mathsf{Bool}_P$. Also $\varphi \otimes \vec{S}$, for $\varphi : A \to B$ in Bool_P. We say that $A \otimes \vec{S}$ is a condensate of \vec{S}. A projection in \mathcal{S} is either an isomorphism or a factor morphism $X \times Y \to X$ in \mathcal{S}. An extended projection is a directed colimit of projections (in \mathcal{S}^2).

Proposition (Gillibert and W., 2009)

If a morphism $\varphi : A \to B$ in Bool_P is normal, then $\varphi \otimes \vec{S}$ is an extended projection in \mathcal{S}.
Special sorts of posets

For a subset X in a poset P, we set

$$P \uparrow X := \{ p \in P \mid X \leq p \}$$

and

$$\nabla X := \text{Min}(P \uparrow X).$$
Special sorts of posets

- For a subset X in a poset P, we set $P \uparrow X := \{ p \in P \mid X \leq p \}$ and $\bigtriangleup X := \text{Min}(P \uparrow X)$.
- The \bigtriangleup-closure of $X \subseteq P$ is the least \bigtriangleup-closed subset of P containing X.
Special sorts of posets

- For a subset X in a poset P, we set $P \uparrow X := \{p \in P \mid X \leq p\}$ and $\bigtriangleup X := \operatorname{Min}(P \uparrow X)$.
- The \bigtriangleup-closure of $X \subseteq P$ is the least \bigtriangleup-closed subset of P containing X.
- P is a pseudo join-semilattice, if $P \uparrow X$ is a finitely generated upper subset of P, for any finite $X \subseteq P$.
Special sorts of posets

- For a subset X in a poset P, we set $P \uparrow X := \{ p \in P \mid X \leq p \}$ and $\nabla X := \text{Min}(P \uparrow X)$.
- The ∇-closure of $X \subseteq P$ is the least ∇-closed subset of P containing X.
- P is a pseudo join-semilattice, if $P \uparrow X$ is a finitely generated upper subset of P, for any finite $X \subseteq P$.
- P is supported, if it is a pseudo join-semilattice and the ∇-closure of any finite subset of finite.
Special sorts of posets

- For a subset X in a poset P, we set $P \uparrow X := \{ p \in P \mid X \leq p \}$ and $\nabla X := \text{Min}(P \uparrow X)$.
- The ∇-closure of $X \subseteq P$ is the least ∇-closed subset of P containing X.
- P is a pseudo join-semilattice, if $P \uparrow X$ is a finitely generated upper subset of P, for any finite $X \subseteq P$.
- P is supported, if it is a pseudo join-semilattice and the ∇-closure of any finite subset of finite.
- P is an almost join-semilattice, if it is a pseudo join-semilattice and $P \downarrow a$ is a join-semilattice $\forall a \in P$.
Special sorts of posets

- For a subset \(X \) in a poset \(P \), we set
 \[P \uparrow X := \{ p \in P \mid X \leq p \} \text{ and } \triangledown X := \text{Min}(P \uparrow X). \]
- The \(\triangledown \)-closure of \(X \subseteq P \) is the least \(\triangledown \)-closed subset of \(P \) containing \(X \).
- \(P \) is a **pseudo join-semilattice**, if \(P \uparrow X \) is a finitely generated upper subset of \(P \), for any finite \(X \subseteq P \).
- \(P \) is **supported**, if it is a pseudo join-semilattice and the \(\triangledown \)-closure of any finite subset of finite.
- \(P \) is an **almost join-semilattice**, if it is a pseudo join-semilattice and \(P \downarrow a \) is a join-semilattice \(\forall a \in P \).
- \((\text{pseudo join-semilattice}) \Rightarrow (\text{supported}) \Rightarrow (\text{almost join-semilattice})\); the converses do not hold.
Norm-coverings and λ-lifters

- A **norm-covering** of a poset P is a pair (X, ∂), where X is a pseudo join-semilattice and $\partial: X \rightarrow P$ is isotone.
Norm-coverings and λ-lifters

- A norm-covering of a poset P is a pair (X, ∂), where X is a pseudo join-semilattice and $\partial: X \rightarrow P$ is isotone. An ideal u of X is sharp, if $\partial(u)$ has a largest element, then denoted by ∂u.
Norm-coverings and λ-lifters

A norm-covering of a poset P is a pair (X, ∂), where X is a pseudo join-semilattice and $\partial : X \to P$ is isotone. An ideal u of X is sharp, if $\partial(u)$ has a largest element, then denoted by ∂u.

Let λ be an infinite cardinal. A λ-lifter of P is a pair (X, X), where X is a norm-covering of P, X is a set of sharp ideals of X, and, setting $X^= := \{ x \in X \mid \partial x \text{ not maximal} \}$,

1. $\text{card}(X \downarrow x) < \lambda$ for each $x \in X^=$.
2. (Kuratowski-like property) For each isotone $S : X^= \to [X]^{<\lambda}$, there exists an isotone $\sigma : P \to X$ such that
 1. $\partial \circ \sigma = \text{id}_P$;
 2. $\forall p < q \in P, S(\sigma(p)) \cap \sigma(q) \subseteq \sigma(p)$.
3. If $\lambda = \aleph_0$, then X is supported.
The P-scaled Boolean algebras $\mathbf{F}(X)$

For a norm-covering $\partial: X \rightarrow P$, denote by $\mathbf{F}(X)$ the Boolean algebra defined by generators \tilde{u} (for $u \in X$) and relations

1. $\tilde{v} \leq \tilde{u}$, for all $u \leq v$ in X;
2. $\tilde{u} \wedge \tilde{v} = \bigvee (\tilde{w} \mid w \in u \triangleleft v)$, for all $u, v \in X$;
3. $1 = \bigvee (\tilde{u} \mid u \in \text{Min } X)$.

The P-scaled Boolean algebras $F(X)$

- For a norm-covering $\partial : X \to P$, denote by $F(X)$ the Boolean algebra defined by generators \tilde{u} (for $u \in X$) and relations
 1. $\tilde{v} \leq \tilde{u}$, for all $u \leq v$ in X;
 2. $\tilde{u} \land \tilde{v} = \bigvee (\tilde{w} \mid w \in u \triangleleft v)$, for all $u, v \in X$;
 3. $1 = \bigvee (\tilde{u} \mid u \in \text{Min } X)$.

- Then define $F(X)^{(p)}$ as the ideal of $F(X)$ generated by $\{\tilde{u} \mid u \in X$ and $p \leq \partial u\}$, for each $p \in P$.
The P-scaled Boolean algebras $F(X)$

- For a norm-covering $\partial : X \to P$, denote by $F(X)$ the Boolean algebra defined by generators \tilde{u} (for $u \in X$) and relations

 1. $\tilde{v} \leq \tilde{u}$, for all $u \leq v$ in X;
 2. $\tilde{u} \wedge \tilde{v} = \bigvee (\tilde{w} | w \in u \triangleleft v)$, for all $u, v \in X$;
 3. $1 = \bigvee (\tilde{u} | u \in \text{Min } X)$.

- Then define $F(X)^{(p)}$ as the ideal of $F(X)$ generated by $
\{\tilde{u} | u \in X \text{ and } p \leq \partial u\}$, for each $p \in P$.

- The pair $F(X) := (F(X), (F(X)^{(p)} | p \in P))$ is a P-scaled Boolean algebra.
The P-scaled Boolean algebras $F(X)$

- For a norm-covering $\partial : X \to P$, denote by $F(X)$ the Boolean algebra defined by generators \tilde{u} (for $u \in X$) and relations
 1. $\tilde{v} \leq \tilde{u}$, for all $u \leq v$ in X;
 2. $\tilde{u} \land \tilde{v} = \bigvee (\tilde{w} \mid w \in u \land v)$, for all $u, v \in X$;
 3. $1 = \bigvee (\tilde{u} \mid u \in \text{Min } X)$.

- Then define $F(X)^{(p)}$ as the ideal of $F(X)$ generated by $\{\tilde{u} \mid u \in X$ and $p \leq \partial u\}$, for each $p \in P$.

- The pair $F(X) := (F(X), (F(X)^{(p)} \mid p \in P))$ is a P-scaled Boolean algebra.

- The assignment $X \mapsto F(X)$ has nice functorial properties.
More on λ-lifters

Proposition (Gillibert and W., 2009)

If a poset P has a λ-lifter, then P is a finite disjoint union of almost join-semilattices with zero (in particular, it is an almost join-semilattice). Every finite almost join-semilattice P has a λ-lifter (λ arbitrary infinite cardinal). The minimal cardinality of a possible underlying X is $\leq \lambda + (\dim P - 1)$ (and $< \lambda$ may occur). For infinite P, the existence of λ-lifters is related to large cardinal axioms, for instance Erdős cardinals.
More on λ-lifters

Proposition (Gillibert and W., 2009)

If a poset P has a λ-lifter, then P is a finite disjoint union of almost join-semilattices with zero (in particular, it is an almost join-semilattice).
More on λ-lifters

Proposition (Gillibert and W., 2009)

If a poset P has a λ-lifter, then P is a finite disjoint union of almost join-semilattices with zero (in particular, it is an almost join-semilattice).

- Every finite almost join-semilattice P has a λ-lifter (λ arbitrary infinite cardinal). The minimal cardinality of a possible underlying X is $\leq \lambda^+ (\dim P - 1)$ (and $<$ may occur).
Proposition (Gillibert and W., 2009)

If a poset P has a λ-lifter, then P is a finite disjoint union of almost join-semilattices with zero (in particular, it is an almost join-semilattice).

- Every finite almost join-semilattice P has a λ-lifter (λ arbitrary infinite cardinal). The minimal cardinality of a possible underlying X is $\leq \lambda^+ (\dim P - 1)$ (and $<$ may occur).
- For infinite P, the existence of λ-lifters is related to large cardinal axioms, for instance Erdős cardinals.
Moving to the definition of a λ-larder

- λ is an infinite regular cardinal.
Moving to the definition of a λ-larder

- λ is an infinite regular cardinal.
- We are given categories \mathcal{A}, \mathcal{B}, \mathcal{S} together with functors $\Phi : \mathcal{A} \to \mathcal{S}$ and $\Psi : \mathcal{B} \to \mathcal{S}$.

\[
\begin{array}{c}
\Phi \\
\downarrow \\
\mathcal{A}
\end{array} \quad \begin{array}{c}
\downarrow \\
\mathcal{S}
\end{array} \quad \begin{array}{c}
\Psi \\
\downarrow \\
\mathcal{B}
\end{array}
\]

For certain poset-indexed diagrams \vec{A} of \mathcal{A}, we are trying to find a diagram \vec{B} of \mathcal{B} such that $\Phi(\vec{A}) \sim \Psi(\vec{B})$. We are trying to construct \vec{B} from an object $B \in \mathcal{B}$ such that $\Phi(A) \sim \Psi(B)$, for a suitable condensate A of \vec{A}.
Moving to the definition of a λ-larder

- λ is an infinite regular cardinal.
- We are given categories \mathcal{A}, \mathcal{B}, \mathcal{S} together with functors $\Phi: \mathcal{A} \rightarrow \mathcal{S}$ and $\Psi: \mathcal{B} \rightarrow \mathcal{S}$.

\[
\begin{array}{c}
\Phi \quad \mathcal{S} \\
\downarrow & \quad \downarrow \Psi \\
\mathcal{A} & \quad \mathcal{B}
\end{array}
\]

- For certain poset-indexed diagrams $\vec{\mathcal{A}}$ of \mathcal{A}, we are trying to find a diagram $\vec{\mathcal{B}}$ of \mathcal{B} such that $\Phi \vec{\mathcal{A}} \cong \Psi \vec{\mathcal{B}}$.
Moving to the definition of a λ-larder

- λ is an infinite regular cardinal.
- We are given categories \mathcal{A}, \mathcal{B}, \mathcal{S} together with functors $\Phi: \mathcal{A} \to \mathcal{S}$ and $\Psi: \mathcal{B} \to \mathcal{S}$.

![Diagram]

For certain poset-indexed diagrams $\vec{\mathcal{A}}$ of \mathcal{A}, we are trying to find a diagram $\vec{\mathcal{B}}$ of \mathcal{B} such that $\Phi \vec{\mathcal{A}} \cong \Psi \vec{\mathcal{B}}$. We are trying to construct $\vec{\mathcal{B}}$ from an object $B \in \mathcal{B}$ such that $\Phi(A) \cong \Psi(B)$, for a suitable condensate A of $\vec{\mathcal{A}}$.
Defining a λ-larder

We shall need some add-ons to the data \mathcal{A}, \mathcal{B}, S, Φ, Ψ.
Defining a \(\lambda \)-larder

We shall need some add-ons to the data \(\mathcal{A}, \mathcal{B}, S, \Phi, \Psi \).

Definition (Gillibert and W., 2009)

Defining a λ-larder

We shall need some add-ons to the data \mathcal{A}, \mathcal{B}, S, Φ, Ψ.

Definition (Gillibert and W., 2009)

An octuple $(\mathcal{A}, \mathcal{B}, S, \mathcal{A}^\dagger, \mathcal{B}^\dagger, S\Rightarrow, \Phi, \Psi)$ is a λ-larder, if $\mathcal{A}^\dagger \subseteq \mathcal{A}$ full, $\mathcal{B}^\dagger \subseteq \mathcal{B}$ full, $S\Rightarrow \subseteq S$ subcategory, $B \in \mathcal{B}^\dagger$ is λ-presented in \mathcal{B} and $\Psi(B)$ is λ-presented in S for each $B \in \mathcal{B}^\dagger$, \mathcal{A} has all nonempty small directed limits and all nonempty finite products, $S\Rightarrow$ is “closed under nonempty small directed limits”, Φ preserves nonempty small directed limits, Ψ preserves nonempty λ-small directed limits, Φ(projections) $\subseteq S\Rightarrow$, and (Löwenheim-Skolem Property) for each $S \in \Phi(\mathcal{A}^\dagger)$, each $B \in \mathcal{B}$, and each $\varphi : \Psi(B) \to S$ in $S\Rightarrow$ there are “many” $u : U \to B$ with $U \in \mathcal{B}^\dagger$ such that $\varphi \circ \Psi(u) \in S\Rightarrow$.
The double arrows

- **Double arrows**: arrows in $S \Rightarrow$, denoted $\varphi: S \Rightarrow T$; correspond to normal morphisms in Bool_P.
The double arrows

- **Double arrows**: arrows in $S \Rightarrow$, denoted $\varphi: S \Rightarrow T$; correspond to normal morphisms in Bool_P.
- Ideally, double arrows would be isomorphisms, but practically this can’t always be done.
The double arrows

- **Double arrows**: arrows in \(S \Rightarrow \), denoted \(\varphi : S \Rightarrow T \); correspond to normal morphisms in \(\text{Bool}_P \).
- Ideally, double arrows would be isomorphisms, but practically this can’t always be done.
- However, in many contexts, any double arrow \(\varphi : \Psi(B) \Rightarrow S \) can be “nicely factored” through an isomorphism. Then we speak of projectable larders—most (but not all) larders encountered in nature are projectable. This can be viewed as a categorical analogue to isomorphisms theorems in universal algebra.
The double arrows

- **Double arrows**: arrows in $S \Rightarrow$, denoted $\varphi : S \Rightarrow T$; correspond to normal morphisms in Bool_P.

- Ideally, double arrows would be isomorphisms, but practically this can’t always be done.

- However, in many contexts, any double arrow $\varphi : \Psi(B) \Rightarrow S$ can be “nicely factored” through an isomorphism. Then we speak of projectable larders—most (but not all) larders encountered in nature are projectable. This can be viewed as a categorical analogue to isomorphisms theorems in universal algebra.

- For example, if S is the category of all $(\vee, 0)$-semilattices with $(\vee, 0)$-homomorphisms, $S \Rightarrow$ is often the subcategory with morphisms of the form $S \to S/I$ (I ideal of S) up to iso, and then any double arrow $\varphi : \text{Con}_c U \Rightarrow S$ can be “nicely factored” through an isomorphism.
The statement of CLL is about as follows.
The Condensate Lifting Lemma (CLL)

The statement of CLL is about as follows.

Theorem (Gillibert and W., 2009)

Let λ be an infinite cardinal and let P be a poset with a λ-lifter (X, X), let $(A, B, S, A^\dagger, B^\dagger, S \Rightarrow, \Phi, \Psi)$ be a λ-larder, let \vec{A} be a P-indexed diagram in A such that $A_p \in A^\dagger$ for each non-maximal $p \in P$, let $B \in B$ a λ-continuous directed colimit of a diagram in B^\dagger, and let $\chi: \Psi(\vec{B}) \Rightarrow \Phi(\Phi(\vec{A}) \otimes \vec{A})$. Then there are a P-indexed diagram \vec{B} of subobjects of B in B^\dagger and a double arrow $\vec{\chi}: \Psi \vec{B} \Rightarrow \Phi \vec{A}$. In short: in order to lift the diagram $\Phi \vec{A}$ with respect to $\Psi \Rightarrow$, it is sufficient to lift the object $\Phi(A)$ with respect to $\Psi \Rightarrow$, where A is a suitable condensate of \vec{A} (viz. $A := F(X) \otimes \vec{A}$).
The Condensate Lifting Lemma (CLL)

The statement of CLL is about as follows.

Theorem (Gillibert and W., 2009)

Let λ be an infinite cardinal and let P be a poset with a λ-lifter (X, X), let $(\mathcal{A}, \mathcal{B}, S, \mathcal{A}^\dagger, \mathcal{B}^\dagger, S\Rightarrow, \Phi, \Psi)$ be a λ-larder, let \tilde{A} be a P-indexed diagram in \mathcal{A} such that $A_p \in \mathcal{A}^\dagger$ for each non-maximal $p \in P$, let $B \in \mathcal{B}$ a λ-continuous directed colimit of a diagram in \mathcal{B}^\dagger, and let $\chi : \Psi(B) \Rightarrow \Phi(F(X) \otimes \tilde{A})$. Then there are a P-indexed diagram \tilde{B} of subobjects of B in \mathcal{B}^\dagger and a double arrow $\tilde{\chi} : \Psi\tilde{B} \Rightarrow \Phi\tilde{A}$. In short: in order to lift the diagram $\Phi\tilde{A}$ with respect to $\Psi\Rightarrow$, it is sufficient to lift the object $\Phi(A)$ with respect to $\Psi\Rightarrow$, where A is a suitable condensate of \tilde{A} (viz. $A := F(X) \otimes \tilde{A}$).
The statement of CLL is about as follows.

Theorem (Gillibert and W., 2009)

Let λ be an infinite cardinal and let P be a poset with a λ-lifter (X, X), let $(\mathcal{A}, \mathcal{B}, S, A^\dagger, B^\dagger, S \Rightarrow, \Phi, \Psi)$ be a λ-larder, let \vec{A} be a P-indexed diagram in \mathcal{A} such that $A_p \in A^\dagger$ for each non-maximal $p \in P$, let $B \in \mathcal{B}$ a λ-continuous directed colimit of a diagram in B^\dagger, and let $\chi : \Psi(B) \Rightarrow \Phi(F(X) \otimes \vec{A})$. Then there are a P-indexed diagram \vec{B} of subobjects of B in B^\dagger and a double arrow $\vec{\chi} : \Psi \vec{B} \Rightarrow \Phi \vec{A}$.

In short: in order to lift the diagram $\Phi \vec{A}$ with respect to Ψ, \Rightarrow, it is sufficient to lift the object $\Phi(A)$ with respect to Ψ, \Rightarrow, where A is a suitable condensate of \vec{A} (viz. $A := F(X) \otimes \vec{A}$).
Limitations on the shape of P

- The poset P in the statement of CLL needs to be an almost join-semilattice with zero (or a finite disjoint union of such guys).
Limitations on the shape of P

- The poset P in the statement of CLL needs to be an almost join-semilattice with zero (or a finite disjoint union of such guys).
- In particular, CLL does not apply to diagrams indexed by the following posets:
Limitations on the shape of P

- The poset P in the statement of CLL needs to be an almost join-semilattice with zero (or a finite disjoint union of such guys).
- In particular, CLL does not apply to diagrams indexed by the following posets:

 ![Diagram of posets](image)

- Too bad…
The Grätzer-Schmidt Theorem

Theorem (Grätzer and Schmidt, 1963)

Every \((\lor, 0)\)-semilattice is isomorphic to \(\text{Con}_c A\), for some (universal) algebra \(A\). Of course \(A\) can be unary. Nevertheless, due to a 1979 paper by Freese, Lampe, and Taylor, there is no bound on the cardinality of the similarity type of the algebra \(A\).

Hence, if we want to state a diagram version of the GS Theorem, we need to work in a suitable category of non-indexed algebras.

Among 3 possible definitions of non-indexed algebras, 2 of them won't satisfy the assumptions of CLL. The one that works is the following: consider the category \(\text{MAlg}_1\) of all unary algebras, where \(f: A \to B\) means that \(\text{Op}(A) \subseteq \text{Op}(B)\) and \(f\) is a homomorphism for all symbols in \(\text{Op}(A)\).
The Grätzer-Schmidt Theorem

Theorem (Grätzer and Schmidt, 1963)

Every \((∨, 0)\)-semilattice is isomorphic to \(\text{Con}_c \mathbf{A}\), for some (universal) algebra \(\mathbf{A}\).
The Grätzer-Schmidt Theorem

Theorem (Grätzer and Schmidt, 1963)

Every \((\lor, 0)\)-semilattice is isomorphic to \(\text{Con}_c A\), for some (universal) algebra \(A\).

- Of course \(A\) can be unary. Nevertheless, due to a 1979 paper by Freese, Lampe, and Taylor, there is no bound on the cardinality of the similarity type of the algebra \(A\).
The Grätzer-Schmidt Theorem

Theorem (Grätzer and Schmidt, 1963)

Every $(\lor, 0)$-semilattice is isomorphic to $\text{Con}_c A$, for some (universal) algebra A.

- Of course A can be unary. Nevertheless, due to a 1979 paper by Freese, Lampe, and Taylor, there is no bound on the cardinality of the similarity type of the algebra A.
- Hence, if we want to state a diagram version of the GS Theorem, we need to work in a suitable category of non-indexed algebras.
The Grätzer-Schmidt Theorem

Theorem (Grätzer and Schmidt, 1963)

Every $(\vee, 0)$-semilattice is isomorphic to $\text{Con}_c A$, for some (universal) algebra A.

- Of course A can be unary. Nevertheless, due to a 1979 paper by Freese, Lampe, and Taylor, there is no bound on the cardinality of the similarity type of the algebra A.
- Hence, if we want to state a diagram version of the GS Theorem, we need to work in a suitable category of non-indexed algebras.
- Among 3 possible definitions of non-indexed algebras, 2 of them won’t satisfy the assumptions of CLL.
The Grätzer-Schmidt Theorem

Theorem (Grätzer and Schmidt, 1963)
Every \((\lor, 0)\)-semilattice is isomorphic to \(\text{Con}_c A\), for some (universal) algebra \(A\).

- Of course \(A\) can be unary. Nevertheless, due to a 1979 paper by Freese, Lampe, and Taylor, there is no bound on the cardinality of the similarity type of the algebra \(A\).
- Hence, if we want to state a diagram version of the GS Theorem, we need to work in a suitable category of non-indexed algebras.
- Among 3 possible definitions of non-indexed algebras, 2 of them won’t satisfy the assumptions of CLL.
- The one that works is the following: consider the category \(\text{MAAlg}_1\) of all unary algebras, where \(f: A \to B\) means that \(\text{Op}(A) \subseteq \text{Op}(B)\) and \(f\) is a homomorphism for all symbols in \(\text{Op}(A)\).
The Grätzer-Schmidt Theorem (introducing the larder data)

- Denote by $\text{Sem}_{\lor,0}$ the category of all $(\lor, 0)$-semilattices with $(\lor, 0)$-homomorphisms.
The Grätzer-Schmidt Theorem (introducing the larder data)

- Denote by $\text{Sem}_{\lor,0}$ the category of all $(\lor,0)$-semilattices with $(\lor,0)$-homomorphisms.
- A surjective homomorphism $f: S \twoheadrightarrow T$ of $(\lor,0)$-semilattices is ideal-induced, if $f(a) \leq f(b) \Rightarrow (\exists x)(f(x) = 0 \text{ and } a \leq b \lor x)$.
The Grätzer-Schmidt Theorem (introducing the larder data)

- Denote by $\textbf{Sem}_{\lor,0}$ the category of all $(\lor, 0)$-semilattices with $(\lor, 0)$-homomorphisms.

- A surjective homomorphism $f : S \rightarrow T$ of $(\lor, 0)$-semilattices is ideal-induced, if $f(a) \leq f(b) \Rightarrow (\exists x)(f(x) = 0 \text{ and } a \leq b \lor x)$. Let those be the double arrows in $\textbf{Sem}_{\lor,0}$.
The Grätzer-Schmidt Theorem (introducing the larder data)

- Denote by $\mathbf{Sem}_{\lor, 0}$ the category of all $(\lor, 0)$-semilattices with $(\lor, 0)$-homomorphisms.

- A surjective homomorphism $f : S \twoheadrightarrow T$ of $(\lor, 0)$-semilattices is ideal-induced, if $f(a) \leq f(b) \Rightarrow (\exists x)(f(x) = 0$ and $a \leq b \lor x)$. Let those be the double arrows in $\mathbf{Sem}_{\lor, 0}$.

- For an infinite regular cardinal λ, denote by $\mathbf{Sem}_{\lor, 0}^{(\lambda)}$ the class of all $(\lor, 0)$-semilattices of cardinality $<\lambda$. Similarly for $\mathbf{MAlg}_{1}^{(\lambda)}$ (require $\text{card } A + \text{card } \text{Op}(A) < \lambda$).
The Grätzer-Schmidt Theorem (picture of the larder data)

\[S \Rightarrow := \text{ideal-ind. homs} \]

\[S := \text{Sem}_{\vee,0} \]

\[\Phi := \text{id} \]

\[\Psi := \text{Con}_c \]

\[A \Rightarrow := \text{ideal-ind. homs} \]

\[A := \text{Sem}_{\vee,0} \]

\[A^\dagger := \text{Sem}^{(\lambda)}_{\vee,0} \]

\[B \Rightarrow := \text{MAlg}_1 \]

\[B := \text{MAlg}_{1}^{(\lambda)} \]

\[B^\dagger := \text{MAlg}_{1}^{(\lambda)} \]
The Grätzer-Schmidt Theorem (diagram version)

Theorem (Gillibert and W., 2009)

Let P be a poset and let \vec{S} be a P-indexed diagram of $(\lor, 0)$-semilattices and $(\lor, 0)$-homomorphisms. If either P is finite, or P is infinite and "a large enough cardinal exists", then \vec{S} has a lifting, wrt. the Con_c functor, by a diagram of unary algebras and homomorphisms in MAlg^1. The large cardinal axiom in question states the existence of large independent sets for certain set functions (cf. Kuratowski's Free Set Theorem). If there is a proper class of Erdős cardinals (this axiom is weaker, consistency-wise, than a Ramsey cardinal), then this assumption is satisfied for any poset P.
The Grätzer-Schmidt Theorem (diagram version)

Theorem (Gillibert and W., 2009)

Let P be a poset and let \vec{S} be a P-indexed diagram of $(\vee, 0)$-semilattices and $(\vee, 0)$-homomorphisms.
The Grätzer-Schmidt Theorem (diagram version)

Theorem (Gillibert and W., 2009)

Let P be a poset and let \vec{S} be a P-indexed diagram of $(\lor, 0)$-semilattices and $(\lor, 0)$-homomorphisms. If either P is finite, or P is infinite and “a large enough cardinal exists”, then \vec{S} has a lifting, wrt. the Con_c functor, by a diagram of unary algebras and homomorphisms in \mathbf{MAlg}_1.

The large cardinal axiom in question states the existence of large independent sets for certain set functions (cf. Kuratowski’s Free Set Theorem). If there is a proper class of Erdős cardinals (this axiom is weaker, consistency-wise, than a Ramsey cardinal), then this assumption is satisfied for any poset P.
The Grätzer-Schmidt Theorem (diagram version)

Theorem (Gillibert and W., 2009)

Let P be a poset and let \vec{S} be a P-indexed diagram of $(\vee, 0)$-semilattices and $(\vee, 0)$-homomorphisms. If either P is finite, or P is infinite and “a large enough cardinal exists”, then \vec{S} has a lifting, wrt. the Con_c functor, by a diagram of unary algebras and homomorphisms in MAlg_1.

The large cardinal axiom in question states the existence of large independent sets for certain set functions (cf. Kuratowski’s Free Set Theorem).
The Grätzer-Schmidt Theorem (diagram version)

Theorem (Gillibert and W., 2009)

Let P be a poset and let \vec{S} be a P-indexed diagram of $({\lor}, 0)$-semilattices and $({\lor}, 0)$-homomorphisms. If either P is finite, or P is infinite and “a large enough cardinal exists”, then \vec{S} has a lifting, wrt. the Con_c functor, by a diagram of unary algebras and homomorphisms in \mathbf{MAlg}_1.

The large cardinal axiom in question states the existence of large independent sets for certain set functions (cf. Kuratowski’s Free Set Theorem). If there is a proper class of Erdős cardinals (this axiom is weaker, consistency-wise, than a Ramsey cardinal), then this assumption is satisfied for any poset P.
Relative critical points between quasivarieties

- **Quasivariety** of structures: class of first-order structures, in a given first-order language, closed under \mathbf{S}, \mathbf{P}, and directed limits.
Relative critical points between quasivarieties

- **Quasivariety** of structures: class of first-order structures, in a given first-order language, closed under S, P, and directed \lim.

- For a structure A and a quasivariety \mathcal{V} (in the same language), set $\text{Con}^\mathcal{V}A := \{ \alpha \in \text{Con}A \mid A/\alpha \in \mathcal{V} \}$.

Relative critical points between quasivarieties

- **Quasivariety** of structures: class of first-order structures, in a given first-order language, closed under S, P, and directed lim.

- For a structure A and a quasivariety \mathcal{V} (in the same language), set $\text{Con}^\mathcal{V} A := \{ \alpha \in \text{Con} A \mid A/\alpha \in \mathcal{V} \}$. In particular, $\text{Con}^\mathcal{V} A$ is an algebraic lattice.
Relative critical points between quasivarieties

- **Quasivariety** of structures: class of first-order structures, in a given first-order language, closed under S, P, and directed \lims.

- For a structure A and a quasivariety \mathcal{V} (in the same language), set $\text{Con}^\mathcal{V}A := \{ \alpha \in \text{Con}A \mid A/\alpha \in \mathcal{V} \}$. In particular, $\text{Con}^\mathcal{V}A$ is an algebraic lattice.

- Then set $\text{Con}_{c,r}^\mathcal{V} := \{ S \in \text{Sem}^\mathcal{V,0} \mid (\exists A \in \mathcal{V})(S \cong \text{Con}^\mathcal{V}A) \}$.
Relative critical points between quasivarieties

- **Quasivariety** of structures: class of first-order structures, in a given first-order language, closed under S, P, and directed \lims.

- For a structure A and a quasivariety \mathcal{V} (in the same language), set $\text{Con}^{\mathcal{V}} A := \{ \alpha \in \text{Con} A \mid A/\alpha \in \mathcal{V} \}$. In particular, $\text{Con}^{\mathcal{V}} A$ is an algebraic lattice.

- Then set

 \[\text{Con}_{c,r}^{\mathcal{V}} := \{ S \in \text{Sem}_{\mathcal{V},0} \mid (\exists A \in \mathcal{V})(S \cong \text{Con}_{c}^{\mathcal{V}} A) \} \]

- For quasivarieties \mathcal{A} and \mathcal{B} (not necessarily in the same language), set

 \[\text{crit}_{r}(\mathcal{A}; \mathcal{B}) := \min\{ \text{card } S \mid S \in (\text{Con}_{c,r}^{\mathcal{A}}) \setminus (\text{Con}_{c,r}^{\mathcal{B}}) \} \]

 if it exists, ∞ otherwise.
Description of the larder data

Small variations around the following:

\[S \Rightarrow := \text{ideal-ind. homs} \]
\[S := \text{Sem}_{\lor,0} \]

\[\Phi := \text{Con}_c^A \]
\[\Psi := \text{Con}_c^B \]

\[\mathcal{A} \]
\[\mathcal{A}^\dagger := \mathcal{A}_{\text{finite}} \]

\[\mathcal{B} \]
\[\mathcal{B}^\dagger := \mathcal{B}_{\text{finite}} \]
Upper bounds for relative critical points

Theorem (Gillibert and W., 2009)

Let A and B be quasivarieties (possibly in different languages), such that the language of A has only finitely many relations and B is finitely generated (no need for CD), and let P be a nontrivial finite almost join-semilattice with zero. If there exists a P-indexed diagram \vec{A} of objects of A with finite universe such that $\text{Con}_A c \vec{A}$ has no lifting, wrt. $\text{Con}_B c$, in B, then $\text{crit}_{r}(A; B) \leq \aleph_0 \text{dim}(P) - 1$.

Furthermore, $\text{Con} c \vec{A} \not\subseteq \text{Con} c \vec{B}$ implies that $\text{crit}_{r}(A; B) < \aleph_\omega$.

(First obtained for varieties by Gillibert)

Here, $\text{dim}(P)$ denotes the order-dimension of P. The inequality $\text{crit}_{r}(A; B) < \aleph_0 \text{dim}(P) - 1$ may hold.
Upper bounds for relative critical points

Theorem (Gillibert and W., 2009)

Let \mathcal{A} and \mathcal{B} be quasivarieties (possibly in different languages), such that the language of \mathcal{A} has only finitely many relations and \mathcal{B} is finitely generated (no need for CD), and let P be a nontrivial finite almost join-semilattice with zero.

The inequality $\text{crit}^r(\mathcal{A};\mathcal{B}) < \aleph^{\dim(P)}$ may hold.
Upper bounds for relative critical points

Theorem (Gillibert and W., 2009)

Let \mathcal{A} and \mathcal{B} be quasivarieties (possibly in different languages), such that the language of \mathcal{A} has only finitely many relations and \mathcal{B} is finitely generated (no need for CD), and let P be a nontrivial finite almost join-semilattice with zero. If there exists a P-indexed diagram $\vec{\mathcal{A}}$ of objects of \mathcal{A} with finite universe such that $\text{Con}^\mathcal{A}_c \vec{\mathcal{A}}$ has no lifting, wrt. $\text{Con}^\mathcal{B}_c$, in \mathcal{B}, then $\text{crit}_r(\mathcal{A}; \mathcal{B}) \leq \aleph_{\text{dim}(P)} - 1$.
Upper bounds for relative critical points

Theorem (Gillibert and W., 2009)

- Let \mathcal{A} and \mathcal{B} be quasivarieties (possibly in different languages), such that the language of \mathcal{A} has only finitely many relations and \mathcal{B} is finitely generated (no need for CD), and let P be a nontrivial finite almost join-semilattice with zero. If there exists a P-indexed diagram $\tilde{\mathcal{A}}$ of objects of \mathcal{A} with finite universe such that $\text{Con}_{c}^{\mathcal{A}} \tilde{\mathcal{A}}$ has no lifting, wrt. $\text{Con}_{c}^{\mathcal{B}}$, in \mathcal{B}, then $\text{crit}_{r}(\mathcal{A}; \mathcal{B}) \leq \aleph_{\dim(P) - 1}$.

- Furthermore, $\text{Con}_{c,r}^{\mathcal{A}} \nsubseteq \text{Con}_{c,r}^{\mathcal{B}}$ implies that $\text{crit}_{r}(\mathcal{A}; \mathcal{B}) < \aleph_{\omega}$.
Upper bounds for relative critical points

Theorem (Gillibert and W., 2009)

- Let \mathcal{A} and \mathcal{B} be quasivarieties (possibly in different languages), such that the language of \mathcal{A} has only finitely many relations and \mathcal{B} is finitely generated (no need for CD), and let P be a nontrivial finite almost join-semilattice with zero. If there exists a P-indexed diagram \vec{A} of objects of \mathcal{A} with finite universe such that $\text{Con}_c^\mathcal{A} \vec{A}$ has no lifting, wrt. $\text{Con}_c^\mathcal{B}$, in \mathcal{B}, then $\text{crit}_r(\mathcal{A}; \mathcal{B}) \leq \aleph_{\dim(P)-1}$.

- Furthermore, $\text{Con}_{c,r} \mathcal{A} \not\subseteq \text{Con}_{c,r} \mathcal{B}$ implies that $\text{crit}_r(\mathcal{A}; \mathcal{B}) < \aleph_\omega$. (First obtained for varieties by Gillibert)
Upper bounds for relative critical points

Theorem (Gillibert and W., 2009)

- Let \mathcal{A} and \mathcal{B} be quasivarieties (possibly in different languages), such that the language of \mathcal{A} has only finitely many relations and \mathcal{B} is finitely generated (no need for CD), and let P be a nontrivial finite almost join-semilattice with zero. If there exists a P-indexed diagram \vec{A} of objects of \mathcal{A} with finite universe such that $\text{Con}^\mathcal{A}_c \vec{A}$ has no lifting, wrt. $\text{Con}^\mathcal{B}_c$, in \mathcal{B}, then $\text{crit}_r(\mathcal{A}; \mathcal{B}) \leq \aleph_{\dim(P)-1}$.

- Furthermore, $\text{Con}^\mathcal{A}_{c,r} \not\subseteq \text{Con}^\mathcal{B}_{c,r}$ implies that $\text{crit}_r(\mathcal{A}; \mathcal{B}) < \aleph_\omega$. (First obtained for varieties by Gillibert)

- Here, $\dim(P)$ denotes the order-dimension of P.
Upper bounds for relative critical points

Theorem (Gillibert and W., 2009)

- Let \mathcal{A} and \mathcal{B} be quasivarieties (possibly in different languages), such that the language of \mathcal{A} has only finitely many relations and \mathcal{B} is finitely generated (*no need for CD*), and let P be a nontrivial finite almost join-semilattice with zero. If there exists a P-indexed diagram \vec{A} of objects of \mathcal{A} with finite universe such that $\text{Con}^\mathcal{A}_c \vec{A}$ has no lifting, wrt. $\text{Con}^\mathcal{B}_c$, in \mathcal{B}, then $\text{crit}_r(\mathcal{A}; \mathcal{B}) \leq \aleph_{\text{dim}(P)-1}$.
- Furthermore, $\text{Con}^\mathcal{A}_{c,r} \not\subseteq \text{Con}^\mathcal{B}_{c,r}$ implies that $\text{crit}_r(\mathcal{A}; \mathcal{B}) < \aleph_\omega$. (*First obtained for varieties by Gillibert*)

- Here, $\text{dim}(P)$ denotes the *order-dimension* of P.
- The inequality $\text{crit}_r(\mathcal{A}; \mathcal{B}) < \aleph_{\text{dim}(P)-1}$ may hold.
Actually, \(\text{crit}_r(\mathcal{A}; \mathcal{B}) \leq \aleph_{\text{kur}_0(P) - 1} \), where \(\text{kur}_0(P) \), the "restricted Kuratowski index of \(P \)" , is the least positive integer \(n \) such that a certain "existence of large independent sets"-type statement, denoted by \((\aleph_{n-1}, <\aleph_0) \rightharpoonup P\), holds.
Actually, $\text{crit}_r(\mathcal{A}; \mathcal{B}) \leq \aleph_{\text{kur}_0(P) - 1}$, where $\text{kur}_0(P)$, the “restricted Kuratowski index of P”, is the least positive integer n such that a certain “existence of large independent sets”-type statement, denoted by $(\aleph_{n-1}, < \aleph_0) \simeq P$, holds. In particular, $\text{kur}_0(P) \leq \dim(P)$.

Restricted Kuratowski index of a finite poset
Actually, \(\text{crit}_r(\mathcal{A}; \mathcal{B}) \leq \aleph_{\text{kur}_0(P)-1} \), where \(\text{kur}_0(P) \), the “restricted Kuratowski index of \(P \)”, is the least positive integer \(n \) such that a certain “existence of large independent sets”-type statement, denoted by \((\aleph_{n-1}, \langle \aleph_0 \rangle) \leadsto P \), holds. In particular, \(\text{kur}_0(P) \leq \dim(P) \).

In particular, calculations of critical points may lead to estimates of the form \(\text{crit}_r(\mathcal{A}; \mathcal{B}) \leq \aleph_{\log \log n} \ldots \)
An element a in a 0-lattice L is **large**, if $\text{con}(0, a) = L \times L$.
An element a in a 0-lattice L is **large**, if $\text{con}(0, a) = L \times L$. An **$n$-frame** in L is a family $((a_i)_{0 \leq i < n}, (c_i)_{1 \leq i < n})$ such that $(a_i)_{i < n}$ is independent and c_i is an axis of perspectivity between a_0 and a_i for each $i \in \{1, \ldots, n\}$.

Theorem (Jónsson, 1962)

Let L be a sectionally complemented modular lattice with a large 4-frame. If L has a countable cofinal sequence, then L is coordinatizable (i.e., \exists regular ring such that $L \cong L(R)$).

Theorem (W., 2008)

There exists a non-coordinatizable sectionally complemented modular lattice, of cardinality \aleph_1, with a large 4-frame.
An element a in a 0-lattice L is **large**, if $\text{con}(0, a) = L \times L$. An **$n$-frame** in L is a family $((a_i)_{0 \leq i < n}, (c_i)_{1 \leq i < n})$ such that $(a_i)_{i < n}$ is independent and c_i is an axis of perspectivity between a_0 and a_i for each $i \in \{1, \ldots, n\}$. It is **large**, if a_0 is large.
An element a in a 0-lattice L is large, if $\text{con}(0, a) = L \times L$. An n-frame in L is a family $((a_i)_{0 \leq i < n}, (c_i)_{1 \leq i < n})$ such that $(a_i)_{i < n}$ is independent and c_i is an axis of perspectivity between a_0 and a_i for each $i \in \{1, \ldots, n\}$. It is large, if a_0 is large.

Theorem (Jónsson, 1962)
An element a in a 0-lattice L is **large**, if $\text{con}(0, a) = L \times L$. An **$n$-frame** in L is a family $((a_i)_{0 \leq i < n}, (c_i)_{1 \leq i < n})$ such that $(a_i)_{i < n}$ is independent and c_i is an axis of perspectivity between a_0 and a_i for each $i \in \{1, \ldots, n\}$. It is **large**, if a_0 is large.

Theorem (Jónsson, 1962)

Let L be a sectionally complemented modular lattice with a large 4-frame.
Coordinatization of sectionally complemented modular lattices

An element a in a 0-lattice L is large, if $\text{con}(0, a) = L \times L$. An n-frame in L is a family $((a_i)_{0 \leq i < n}, (c_i)_{1 \leq i < n})$ such that $(a_i)_{i < n}$ is independent and c_i is an axis of perspectivity between a_0 and a_i for each $i \in \{1, \ldots, n\}$. It is large, if a_0 is large.

Theorem (Jónsson, 1962)

Let L be a sectionally complemented modular lattice with a large 4-frame. If L has a countable cofinal sequence, then L is coordinatizable (i.e., $\exists R$ regular ring such that $L \cong \mathbb{L}(R)$).
An element a in a 0-lattice L is large, if $\text{con}(0, a) = L \times L$. An n-frame in L is a family $((a_i)_{0 \leq i < n}, (c_i)_{1 \leq i < n})$ such that $(a_i)_{i < n}$ is independent and c_i is an axis of perspectivity between a_0 and a_i for each $i \in \{1, \ldots, n\}$. It is large, if a_0 is large.

Theorem (Jónsson, 1962)

Let L be a sectionally complemented modular lattice with a large 4-frame. If L has a countable cofinal sequence, then L is coordinatizable (i.e., $\exists R$ regular ring such that $L \cong \mathbb{L}(R)$).

Theorem (W., 2008)
Coordinatization of sectionally complemented modular lattices

An element \(a \) in a 0-lattice \(L \) is **large**, if \(\text{con}(0, a) = L \times L \). An **\(n \)-frame** in \(L \) is a family \(((a_i)_{0 \leq i < n}, (c_i)_{1 \leq i < n}) \) such that \((a_i)_{i < n} \) is independent and \(c_i \) is an axis of perspectivity between \(a_0 \) and \(a_i \) for each \(i \in \{1, \ldots, n\} \). It is **large**, if \(a_0 \) is large.

Theorem (Jónsson, 1962)

Let \(L \) be a sectionally complemented modular lattice with a large 4-frame. If \(L \) has a countable cofinal sequence, then \(L \) is coordinatizable (i.e., \(\exists R \) regular ring such that \(L \cong \mathbb{L}(R) \)).

Theorem (W., 2008)

There exists a non-coordinatizable sectionally complemented modular lattice, of cardinality \(\aleph_1 \), with a large 4-frame.
Larders don’t play any role in the proof of the latter result, until we reach a ω_1-tower of sectionally complemented modular lattices that cannot be lifted by the \mathbb{L} functor.
Larders and CLL

Larders don’t play any role in the proof of the latter result, until we reach a ω_1-tower of sectionally complemented modular lattices that cannot be lifted by the \mathbb{L} functor.

Then larders are used to turn the diagram counterexample to an object counterexample.
Description of the larder data

A modification of the following (with $\lambda := \aleph_1$):
Description of the larder data

A modification of the following (with $\lambda := \aleph_1$):

$$
\begin{align*}
S &\Rightarrow := SCML \Rightarrow \\
S &:= SCML \\
A &:= SCML \\
A^\dagger &:= SCML^{(\lambda)} \\
B &:= Reg \\
B^\dagger &:= Reg^{(\lambda)} \\
\Phi &:= id \\
\Psi &:= \mathbb{I}
\end{align*}
$$
An extension $A \leq B$ of algebras is **congruence-preserving**, if the canonical map $\text{Con } A \rightarrow \text{Con } B$ is an isomorphism.
Lattices without congruence-permutable, congruence-preserving extension

An extension \(A \leq B \) of algebras is *congruence-preserving*, if the canonical map \(\text{Con} A \to \text{Con} B \) is an isomorphism.

Theorem (Gillibert and W., 2009)

Due to earlier results of Ploščica, Tůma, and W., the analogue of this result at \(\aleph_2 \) was already known. Furthermore, in case \(V \) is locally finite, then \(\aleph_1 \) is optimal in the result above. (Open problem in the non locally finite case. For example: does the free lattice on \(\aleph_0 \) generators have a congruence-permutable, congruence-preserving extension?). Unlike all previous examples, the larder data are difficult to figure out.

Let's give an outline.
An extension $A \leq B$ of algebras is **congruence-preserving**, if the canonical map $\text{Con} A \to \text{Con} B$ is an isomorphism.

Theorem (Gillibert and W., 2009)

Let \mathcal{V} be a nondistributive lattice variety. Then the free lattice (resp., the free bounded lattice) on \aleph_1 generators within \mathcal{V} has no congruence-permutable, congruence-preserving extension.
Lattices without congruence-permutable, congruence-preserving extension

An extension $A \leq B$ of algebras is congruence-preserving, if the canonical map $\text{Con} A \rightarrow \text{Con} B$ is an isomorphism.

Theorem (Gillibert and W., 2009)

Let V be a nondistributive lattice variety. Then the free lattice (resp., the free bounded lattice) on \aleph_1 generators within V has no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue of this result at \aleph_2 was already known.
Lattices without congruence-permutable, congruence-preserving extension

An extension $A \leq B$ of algebras is congruence-preserving, if the canonical map $\text{Con} A \rightarrow \text{Con} B$ is an isomorphism.

Theorem (Gillibert and W., 2009)

Let \mathcal{V} be a nondistributive lattice variety. Then the free lattice (resp., the free bounded lattice) on \aleph_1 generators within \mathcal{V} has no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue of this result at \aleph_2 was already known. Furthermore, in case \mathcal{V} is locally finite, then \aleph_1 is optimal in the result above. (Open problem in the non locally finite case. For example: does the free lattice on \aleph_0 generators have a congruence-permutable, congruence-preserving extension?)
Lattices without congruence-permutable, congruence-preserving extension

An extension $A \leq B$ of algebras is congruence-preserving, if the canonical map $\text{Con } A \rightarrow \text{Con } B$ is an isomorphism.

Theorem (Gillibert and W., 2009)

Let \mathcal{V} be a nondistributive lattice variety. Then the free lattice (resp., the free bounded lattice) on \aleph_1 generators within \mathcal{V} has no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue of this result at \aleph_2 was already known. Furthermore, in case \mathcal{V} is locally finite, then \aleph_1 is optimal in the result above. (Open problem in the non locally finite case. For example: does the free lattice on \aleph_0 generators have a congruence-permutable, congruence-preserving extension?)

Unlike all previous examples, the larder data are difficult to figure out.
Lattices without congruence-permutable, congruence-preserving extension

An extension $A \leq B$ of algebras is congruence-preserving, if the canonical map $\text{Con } A \rightarrow \text{Con } B$ is an isomorphism.

Theorem (Gillibert and W., 2009)

Let \mathcal{V} be a nondistributive lattice variety. Then the free lattice (resp., the free bounded lattice) on \aleph_1 generators within \mathcal{V} has no congruence-permutable, congruence-preserving extension.

Due to earlier results of Ploščica, Tůma, and W., the analogue of this result at \aleph_2 was already known. Furthermore, in case \mathcal{V} is locally finite, then \aleph_1 is optimal in the result above. (Open problem in the non locally finite case. For example: does the free lattice on \aleph_0 generators have a congruence-permutable, congruence-preserving extension?)

Unlike all previous examples, the larder data are difficult to figure out. Let’s give an outline.
A semilattice-metric space is a triple $A = (A, \delta_A, \tilde{A})$, where A is a set, \tilde{A} is a $(\lor, 0)$-semilattice, $\delta_A : A \times A \to \tilde{A}$, $\delta_A(x, x) = 0$, $\delta_A(x, y) = \delta_A(y, x)$, $\delta_A(x, z) \leq \delta_A(x, y) \lor \delta_A(y, z)$ $\forall x, y, z \in A$ (say that δ_A is a distance).
A semilattice-metric space is a triple $\mathbf{A} = (A, \delta_A, \tilde{A})$, where A is a set, \tilde{A} is a $(\vee, 0)$-semilattice, $\delta_A : A \times A \to \tilde{A}$, $\delta_A(x, x) = 0$, $\delta_A(x, y) = \delta_A(y, x)$, $\delta_A(x, z) \leq \delta_A(x, y) \lor \delta_A(y, z)$ $\forall x, y, z \in A$ (say that δ_A is a distance).

Morphisms: $(f, \tilde{f}) : \mathbf{A} \to \mathbf{B}$ means that $f : A \to B$, $\tilde{f} : \tilde{A} \to \tilde{B}$, and $\delta_B(f(x), f(y)) = \tilde{f} \delta_A(x, y)$ $\forall x, y \in A$.
A semilattice-metric space is a triple $\mathbf{A} = (A, \delta_A, \tilde{A})$, where A is a set, \tilde{A} is a $(\lor, \mathbf{0})$-semilattice, $\delta_A : A \times A \to \tilde{A}$, $\delta_A(x, x) = 0$, $\delta_A(x, y) = \delta_A(y, x)$, $\delta_A(x, z) \leq \delta_A(x, y) \lor \delta_A(y, z)$ $\forall x, y, z \in A$ (say that δ_A is a distance).

Morphisms: $(f, \tilde{f}) : \mathbf{A} \to \mathbf{B}$ means that $f : A \to B$, $\tilde{f} : \tilde{A} \to \tilde{B}$, and $\delta_B(f(x), f(y)) = \tilde{f} \delta_A(x, y)$ $\forall x, y \in A$. We get a category, Metr.
Semilattice-metric spaces

- A **semilattice-metric space** is a triple $\mathbf{A} = (A, \delta_{\mathbf{A}}, \tilde{A})$, where A is a set, \tilde{A} is a $(\lor, 0)$-semilattice, $\delta_{\mathbf{A}} : A \times A \to \tilde{A}$, $\delta_{\mathbf{A}}(x, x) = 0$, $\delta_{\mathbf{A}}(x, y) = \delta_{\mathbf{A}}(y, x)$, $\delta_{\mathbf{A}}(x, z) \leq \delta_{\mathbf{A}}(x, y) \lor \delta_{\mathbf{A}}(y, z) \ \forall x, y, z \in A$ (say that $\delta_{\mathbf{A}}$ is a distance).

- **Morphisms**: $(f, \tilde{f}) : \mathbf{A} \to \mathbf{B}$ means that $f : A \to B$, $\tilde{f} : \tilde{A} \to B$, and $\delta_{\mathbf{B}}(f(x), f(y)) = \tilde{f} \delta_{\mathbf{A}}(x, y) \ \forall x, y \in A$. We get a category, **Metr**.

- Double arrows in **Metr**: $(f, \tilde{f}) : \mathbf{A} \to \mathbf{B}$ such that f is surjective (nothing said about \tilde{f}).
A semilattice-metric cover is a quadruple $\mathbf{A} = (A^*, A, \delta_\mathbf{A}, \tilde{A})$, where $A^* \subseteq A$, $(A, \delta_\mathbf{A}, \tilde{A})$ is a semilattice-metric space, and $\forall x, y, z \in A^*$, $\exists t \in A$ such that $\delta_\mathbf{A}(x, t) \leq \delta_\mathbf{A}(y, z)$ and $\delta_\mathbf{A}(t, z) \leq \delta_\mathbf{A}(x, y)$ (Parallelogram Rule: imitates one step of “congruence-permutable”).
A semilattice-metric cover is a quadruple $A = (A^*, A, \delta_A, \tilde{A})$, where $A^* \subseteq A$, (A, δ_A, \tilde{A}) is a semilattice-metric space, and $\forall x, y, z \in A^*$, $\exists t \in A$ such that $\delta_A(x, t) \leq \delta_A(y, z)$ and $\delta_A(t, z) \leq \delta_A(x, y)$ (Parallelogram Rule: imitates one step of “congruence-permutable”).

Morphisms defined as in Metr, with $f(A^*) \subseteq B^*$. Get a category Metr^*.
Semilattice-metric spaces and covers

- A **semilattice-metric cover** is a quadruple $\mathcal{A} = (A^*, A, \delta_A, \tilde{A})$, where $A^* \subseteq A$, (A, δ_A, \tilde{A}) is a semilattice-metric space, and $\forall x, y, z \in A^*$, $\exists t \in A$ such that $\delta_A(x, t) \leq \delta_A(y, z)$ and $\delta_A(t, z) \leq \delta_A(x, y)$ (Parallelogram Rule: imitates one step of “congruence-permutable”).

- Morphisms defined as in \textbf{Metr}, with $f(A^*) \subseteq B^*$. Get a category \textbf{Metr}^*.

- “Forgetful” functor $\psi : \textbf{Metr}^* \rightarrow \textbf{Metr}$, $A \mapsto (A^*, \delta_A|_{A^* \times A^*}, \tilde{A})$.

- Ladders and CLL

- General settings

- P-scaled algebras

- Lifters, ladders, and CLL

- Diagram form of GS

- Relative critical points

- Non-coordinatizable SCMLs

- Lattices without CPCP-extension
Every algebra A defines canonically a semilattice-metric space $\Phi(A) := (A, \text{con}_A, \text{Con}_c A)$, where $\text{con}_A(x, y)$ denotes the (principal) congruence generated by (x, y).

From algebras to semilattice-metric spaces
Every algebra A defines canonically a semilattice-metric space $\Phi(A) := (A, \text{con}_A, \text{Con}_c A)$, where $\text{con}_A(x, y)$ denotes the (principal) congruence generated by (x, y).

For algebras A and B with $\text{Op}(A) \subseteq \text{Op}(B)$, a morphism $f : A \rightarrow B$ is a map $A \rightarrow B$ which is a homomorphism for each symbol in $\text{Op}(A)$. This way we get a category, \mathbf{MAlg}.
Every algebra A defines canonically a semilattice-metric space $\Phi(A) := (A, \text{con}_A, \text{Con}_c A)$, where $\text{con}_A(x, y)$ denotes the (principal) congruence generated by (x, y).

For algebras A and B with $\text{Op}(A) \subseteq \text{Op}(B)$, a morphism $f : A \to B$ is a map $A \to B$ which is a homomorphism for each symbol in $\text{Op}(A)$. This way we get a category, MAlg. Then Φ extends naturally to a functor $\text{MAlg} \to \text{Metr}$.
Larders and CLL

General settings

P-scaled algebras

Lifters, larders, and CLL

Diagram form of GS

Relative critical points

Non-coordinatizable SCMLs

Lattices without CPCP-extension

Picture of the larder data

\[S \Rightarrow := \text{Metr} \Rightarrow \]
\[S := \text{Metr} \]

\[\Phi \]

\[\Psi \]

\[\mathcal{A} := \text{MAlg} \]
\[\mathcal{A}^\dagger := \text{MAlg}_{\text{fin}} \]

\[\mathcal{B} := \text{Metr}^* \]
\[\mathcal{B}^\dagger := \text{Metr}^*_{\text{fin}} \]
Hard core of the proof 1: a square of finite lattices

The lattices in the two following diagrams have no CPCP-extension that would be functorial wrt. those diagrams:
Hard core of the proof 2: another square of finite lattices

- Larders and CLL
- General settings
- P-scaled algebras
- Lifters, larders, and CLL
- Diagram form of GS
- Relative critical points
- Non-coordinatizable SCMLs
- Lattices without CPCP-extension