Université de Caen
Département de Mathématiques
Année 2000/2001

DEA Algèbre, Arithmétique et Algorithmique

Mémoire de DEA
Une généralisation du théorème de Dobrowolski pour les hypersurfaces algébriques.

Corentin Pontreau
Sous la direction de Francesco Amoroso.
Minoration de hauteurs d'hypersurfaces
Table des matières

1 Introduction
 I Conjectures et résultats en dimension 1. ... 5
 II Conjectures et résultats en dimension supérieure. 7

2 Hauteurs en dimension supérieure.
 I Hauteurs de points et d’hypersurfaces ... 9
 II Isogénies. ... 13
 III Théorème de Zhang. ... 14

3 Construction de la fonction auxiliaire. ... 19

4 Extrapolation.
 I Lemme clé de Dobrowolski : cas de plusieurs variables. 25
 II Extrapolation. .. 27

5 Démonstration du théorème principal.
 I Choix des paramètres et fonction auxiliaire. 29
 II Conclusion. ... 32

6 Annexe : petits rappels de géométrie algébrique. 33
Notations.

\mathbb{G}_m^n ... $\mathbb{G}_m^n(\overline{\mathbb{Q}})$, le groupe multiplicatif $(\overline{\mathbb{Q}}^*)^n$.

k ... Un corps de nombres.

k_ν ... Complété de k pour la topologie induite par la valeur absolue ν.

$k[x_0, \ldots, x_n]_L$.. Ensemble des polynômes homogènes de degré total L.

$k[x_1, \ldots, x_n]_{\leq L}$.. Ensemble des polynômes de degré total $\leq L$.

\mathcal{M}_k .. Ensemble des places de k.

\mathcal{O}_k .. Anneau des entiers du corps k.

S_{zar} ... Adhérence de Zariski de S.
Chapitre 1

Introduction

En 1933, dans un article désormais célèbre, D. H. Lehmer [Le] pose la question suivante :

étant donné un réel ε strictement positif, est-il possible de trouver un polynôme de la
forme $f(x) = x^r + a_1 x^{r-1} + \cdots + a_r$ où les a_i sont des entiers, tel que la valeur absolue
du produit des racines étant à l’extérieur du cercle unité est comprise entre 1 et $1 + \varepsilon$?

On ignore encore aujourd’hui la réponse pour $\varepsilon < 0,176.$\footnote{La valeur 0, 176 correspond au polynôme $x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1$ pour lequel le produit en question vaut environ 1,17628, exemple donné par [Le].}

I Conjectures et résultats en dimension 1.

Définition. Soit $F \in \mathbb{C}[X]$, $F(X) = a \prod_{j=1}^d (X - \alpha_j)$, on définit la mesure de Mahler de F et on note $M(F)$ le nombre : $M(0) = 0$ et, si $F \neq 0$,

$$M(F) = |a| \prod_{j=1}^d \max \{1, |\alpha_j| \}.$$

Exemple: Pour $F(x) = x^2 - x - 1 = (x - (1 - \sqrt{5})/2)(x - (1 + \sqrt{5})/2)$, on a $M(F) = (\sqrt{5} + 1)/2$.

Il est facile de voir que si $F \in \mathbb{Z}[x]$, alors $M(F) \geq 1$. Un théorème de Kronecker nous dit que si de plus F est irréductible et $F(x) \neq \pm x$, alors

$$M(F) = 1 \iff F$$ est un polynôme cyclotomique.

Définition. Soient $\alpha \in \overline{\mathbb{Q}}$ et F son polynôme minimal sur \mathbb{Z}, on appelle
hauteur de Weil (logarithmique) de α et on note $h(\alpha)$ le nombre :

$$h(\alpha) = \frac{\log M(F)}{[\mathbb{Q}(\alpha) : \mathbb{Q}]}.$$
La question posée par Lehmer peut ainsi se traduire par les deux conjectures suivantes équivalentes entre elles :

Conjecture 1.1 Il existe une constante \(c > 0 \) telle que pour tout polynôme non nul \(F \in \mathbb{Z}[x] \) irréductible \(F(x) \neq \pm x \) qui ne soit pas un polynôme cyclotomique on ait

\[
\log M(F) \geq c.
\]

Conjecture 1.2 Il existe une constante \(c > 0 \) telle que pour tout \(\alpha \in \mathbb{Q}^* \) de degré \(D \) sur \(\mathbb{Q} \) qui n’est pas racine de l’unité, on ait

\[
h(\alpha) \geq \frac{c}{D}.
\]

C. J. Smyth [Sm] en 1971 montre que l’on peut se réduire à l’étude des entiers algébriques réciproques (c’est-à-dire les entiers algébriques non nuls conjugués à leur inverse). Rappelons qu’un polynôme est dit réciproque si l’ensemble de ses racines est invariant par l’application \(z \mapsto 1/z \).

Théorème 1.1 Soit \(F \in \mathbb{Z}[x] \) tel que \(F(0) \neq 0 \) et supposons \(F \) non réciproque. Alors

\[
M(F) \geq \theta = 1,3247 \ldots,
\]

où \(\theta \) désigne la racine réelle du polynôme \(x^3 - x - 1 \).

En termes de hauteurs on a :

Théorème 1.2 Soit \(\alpha \) un nombre algébrique de degré \(D \) non réciproque. Alors

\[
h(\alpha) \geq \frac{\log \theta}{D}.
\]

Néanmoins le meilleur résultat aujourd’hui allant dans le sens de la conjecture 1.2 a été trouvé par E. Dobrowolski en 1979 [Do] :

Théorème 1.3 Il existe une constante \(c > 0 \) telle que pour tout \(\alpha \in \mathbb{Q}^* \) de degré \(D \) sur \(\mathbb{Q} \) qui n’est pas racine de l’unité, on ait

\[
h(\alpha) \geq \frac{c}{D} \left(\frac{\log \log 3D}{\log 3D} \right)^3.
\]

D’autres résultats plus forts, mais avec des hypothèses plus restrictives ont été trouvés. Par exemple A. Schinzel [Sc] (1979) montre que si \(\alpha \) appartient à un corps de nombres Kroneckerien (c’est-à-dire soit un corps totalement réel, soit une extension quadratique complexe d’un tel corps), alors

\[
h(\alpha) \geq \frac{1}{2} \log \frac{1+\sqrt{5}}{2}.
\]

En 2000, F. Amoroso et R. Dvornicich [Am-Dv] ont montré que si \(\alpha \) appartient à une extension cyclotomique, alors \(h(\alpha) \geq \frac{\log 5}{12} \); bien sûr dans les deux on suppose \(\alpha \) non racine de l’unité et non nul.
II Conjectures et résultats en dimension supérieure.

On étendra de façon précise au chapitre suivant les définitions de hauteurs en dimensions supérieures.

On peut généraliser la conjecture 1.2 ainsi, rappelons que l’on dit que n nombres \(\alpha_1, \ldots, \alpha_n \) sont multiplicativement indépendants si

\[
\forall a_1, \ldots, a_n \in \mathbb{Z}, \quad \prod a_i^{a_i} = 1 \implies a_i = 0, \forall i.
\]

Conjecture 1.3 Pour tout \(n \in \mathbb{N}^* \), il existe une constante réelle \(c(n) > 0 \) telle que, pour tout \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{G}_m^n \) dont les coordonnées sont multiplicativement indépendantes, on ait :

\[
h(\alpha) \geq \frac{c(n)}{\delta(\alpha)},
\]

où \(\delta(\alpha) \) désigne le plus petit des degrés des polynômes de \(\mathbb{Q}[x] \) ayant \(\alpha \) comme zéro et \(h(\alpha) \) la hauteur (de Weil) du point projectif défini par \((1, \alpha_1, \ldots, \alpha_n) \) (voir chapitre suivant).

Dans cette direction, [Am-Da2] obtiennent, en adoptant la méthode de Dobrowolski :

Théorème 1.4 Pour tout \(n \in \mathbb{N}^* \), il existe deux constantes réelles \(c(n) > 0 \) et \(\kappa(n) > 0 \) telles que, pour tout \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{G}_m^n \) dont les coordonnées sont multiplicativement indépendantes, on ait :

\[
h(\alpha) \geq \frac{c(n)}{\delta(\alpha)} (\log(3\delta(\alpha)))^{-\kappa(n)}.
\]

On s’intéressera maintenant au cas des hypersurfaces, car dans ce cas on peut définir la notion de hauteur normalisée grâce à la mesure de Mahler. Si \(F \in \mathbb{C}[x_1, \ldots, x_n] \); on définit sa mesure de Mahler en posant \(M(0) = 0 \) et si \(F \neq 0 \):

\[
\log M(F) = \frac{1}{2\pi i} \int_0^{2\pi} \cdots \int_0^{2\pi} \log |F(e^{i\theta_1}, \ldots, e^{i\theta_n})| d\theta_1 \ldots d\theta_n.
\]

(On montrera que cette définition coïncide bien avec celle donnée en dimension 1, voir proposition 2.1).

Soit \(V \) une hypersurface définie sur \(\mathbb{Q} \) représentée par \(F \in \mathbb{Z}[x] \) de contenu 1 et sans facteurs carrés. On définira la hauteur normalisée de \(V \) par

\[
h(V) = \log M(F).
\]

La mesure de Mahler des polynômes à plusieurs variables a été étudiée par plusieurs auteurs. En particulier, Boyd, Lawton et Smyth ont montré indépendamment (voir [Boy], [La] et [Sm]) que la mesure de Mahler d’un polynôme irréductible

\[
F \in \mathbb{Z}[x_1, \ldots, x_n], \quad F(x_1, \ldots, x_n) \neq \pm x_j,
\]

est égale à 1 si et seulement si \(F \) est un polynôme cyclotomique généralisé, c’est-à-dire un polynôme irréductible de la forme

\[
x^\lambda \varphi(x^\mu),
\]
Minoration de hauteurs d'hypersurfaces

où $\lambda, \mu \in \mathbb{Z}^n$ sont deux multi-indices et $\varphi \in \mathbb{Z}[x]$ un polynôme cyclotomique (voir par exemple [Boy]).

On sait que $\hat{h}(V) = 0$ si et seulement si V n’est pas réunion de translatés de sous-groupes algébriques par des points de torsion de G^m_n (i.e. des points de $\left(\mathbb{Q}_{\text{tors}}\right)^n$, \mathbb{Q}_{tors} étant en fait l’ensemble des racines de l’unité). En particulier, si V est irréductible (sur \mathbb{Q}), $\hat{h}(V) = 0$ si et seulement si F est un polynôme cyclotomique généralisé.

Dans ce cas précis des hypersurfaces, la conjecture suivante généralise la 1.1 en dimension supérieur :

Conjecture 1.4 Pour tout $n \in \mathbb{N}$, il existe une constante réelle $c(n) > 0$ telle que pour tout polynôme non nul $F \in \mathbb{Z}[x_1, \ldots, x_n]$ irréductible $F(x_1, \ldots, x_n) \neq \pm x_j$ qui ne soit pas un polynôme cyclotomique généralisé, on ait

$$\log M(F) \geq c(n).$$

Dans cette direction [Am-Dal] on obtienne un résultat plus précis que le théorème 1.4 : l’exposant du logarithme du degré est absolu au lieu de se comporter en n^a.

Soit V une sous-variété de G^m_n ; on note G_V le stabilisateur de V, i.e. l’ensemble

$$G_V = \{ x \in G^m_n : x.V = V \},$$

où

$$\xi.V = \{ \xi.x = (x_1 \xi_1, \ldots, x_n \xi_n) : x \in V \}.$$

Théorème 1.5 Soit V une hypersurface définie sur \mathbb{Q} et \mathbb{Q}-irréductible de G^m_n de degré D et notons $s = \dim G_V$. Alors, si V n’est pas une réunion de translatés de sous-groupes algébriques par des points de torsion de G^m_n, on a

$$\hat{h}(V) \geq \frac{1}{C(n+1)^{1+4/(n-s)}(n-s)^2} \left(\frac{\log ((n+1) \log ((n+1)D))^{2+1/(n-s)}}{\log ((n+1)D)^{1+2/(n-s)}} \right)$$

où C est une constante absolue.

En utilisant une démonstration plus courte, nous obtenons une généralisation du théorème 1.3 de Dobrowolski pour les hypersurfaces, avec ici une constante absolue explicite :

Théorème 1.6 Soit V une hypersurface définie sur \mathbb{Q} et \mathbb{Q}-irréductible de G^m_n de degré D. Alors, si V n’est pas une réunion de translatés de sous-groupes algébriques par des points de torsion de G^m_n, on a

$$\hat{h}(V) \geq 5^{-6} \left(\frac{\log (n \log (8nD))}{n \log (8nD)} \right)^3.$$
Chapitre 2

Hauteurs en dimension supérieure.

I Hauteurs de points et d’hypersurfaces

Nous plongerons \(\mathbb{G}_m^n \) de façon naturelle dans \(\mathbb{P}^n(\mathbb{Q}) : (a_1, \ldots, a_n) \mapsto (1 : a_1 : \ldots : a_n) \).

Nous généralisons dans un premier temps la définition de hauteur de Weil définie au chapitre précédent (on peut vérifier que les 2 coïncident en dimension 1):

Définition. Soit \(P = (x_0 : x_1 : \ldots : x_n) \in \mathbb{P}^n(\mathbb{Q}) \), soit \(k \) un corps de nombres contenant \(x_0, \ldots, x_n \).

On définit la hauteur de Weil (logarithmique) de \(P \) comme :

\[
h(P) = \sum_{\nu \in M_k} \frac{|k_{\nu} : \mathbb{Q}_\nu|}{|k : \mathbb{Q}|} \log \max\{|x_0|_\nu, |x_1|_\nu, \ldots, |x_n|_\nu\},
\]

où \(k_{\nu} \) désigne le complété de \(k \) pour la topologie induite par la valeur absolue \(\nu \).

Remarque : Cette définition à bien un sens ; en effet, en utilisant la formule du produit on voit que le membre de droite ne change pas si l’on remplace \(\alpha \) par \(a\alpha \) où \(a \in \mathbb{Q}^* \).

On définit la hauteur dans \(\mathbb{G}_m^n \) par restriction de \(\mathbb{P}^n(\mathbb{Q}) \) à \(\mathbb{G}_m^n : \)

\[
h(\alpha_1, \ldots, \alpha_n) = \sum_{\nu \in M_k} \frac{|k_{\nu} : \mathbb{Q}_\nu|}{|k : \mathbb{Q}|} \log \max\{1, |\alpha_1|_\nu, \ldots, |\alpha_n|_\nu\},
\]

Un résultat important est le théorème de finitude de Northcott :

Théorème 2.1 Pour tout nombres \(B, D \geq 0 \), l’ensemble

\[
\{P \in \mathbb{P}^n(\mathbb{Q}) \mid h(P) \leq B \text{ et } |\mathcal{Q}(P) : \mathbb{Q}| \leq D\}
\]

est fini. En particulier, pour tout corps de nombres fixé \(k \), l’ensemble

\[
\{P \in \mathbb{P}^n(k) \mid h(P) \leq B\}
\]

est fini.
Démonstration - Choisissons des coordonnées homogènes pour $P = (x_0 : \ldots : x_n)$ telles qu’une coordonnée soit égale à 1. Alors pour toute valeur absolue ν et tout indice i on a:

$$\max\{|x_0|_\nu, \ldots, |x_n|_\nu\} \geq \max\{|x_i|_\nu, 1\}.$$

On obtient alors:

$$h(P) \geq h(x_i) \quad \text{pour} \quad i = 1, \ldots, n.$$

De plus, il est clair que $\mathbb{Q}(P) \supset \mathbb{Q}(x_i)$. Il suffit donc de montrer que, pour tout $1 \leq d \leq D$, l’ensemble

$$\{\alpha \in \hat{\mathbb{Q}} \mid h(\alpha) \leq B \text{ et } [\mathbb{Q}(\alpha) : \mathbb{Q}] = d\}$$

est fini.

Soit $\alpha \in \hat{\mathbb{Q}}$ de degré d, posons $k = \mathbb{Q}(\alpha)$. Soient $\alpha_1, \ldots, \alpha_d$ les conjugués de α sur \mathbb{Q}, et soit

$$F_\alpha(T) = \prod_{j=1}^{d} (T - \alpha_j) = \sum_{r=0}^{d} (-1)^r s_r(\alpha) T^{d-r}$$

le polynôme minimal de α sur \mathbb{Q}. Pour toute valeur absolue $\nu \in M_k$, on peut majorer la taille du polynôme symétrique $s_r(\alpha)$:

$$|s_r(\alpha)|_\nu = \left| \sum_{1 \leq i_1 < \ldots < i_r \leq d} \alpha_{i_1} \cdots \alpha_{i_r} \right|_\nu$$

$$\leq c(\nu, r, d) \max_{1 \leq i_1 < \ldots < i_r \leq d} |\alpha_{i_1} \cdots \alpha_{i_r}|_\nu \quad \text{(inégalité triangulaire)}$$

$$\leq c(\nu, r, d) \max_{1 \leq i \leq d} |\alpha_i|_\nu^r.$$

où $c(\nu, r, d) = \binom{d}{r}$ si ν est archimédien, et 1 sinon.

On a alors:

$$\max\{|s_0(\alpha)|_\nu, \ldots, |s_d(\alpha)|_\nu\} \leq c(\nu, d) \prod_{i=1}^{d} \max\{|\alpha_i|_\nu, 1\}^d,$$

où $c(\nu, d) = 2^d$ si ν est archimédien, et 1 sinon. On obtient:

$$h(s_0(\alpha), \ldots, s_d(\alpha)) \leq d \log 2 + d \sum_{i=1}^{d} h(\alpha_i).$$

Mais les α_i étant conjugués, leur hauteurs sont égales, d’où:

$$h(s_0(\alpha), \ldots, s_d(\alpha)) \leq d \log 2 + d^2 h(\alpha).$$

Supposons maintenant que α soit dans l’ensemble

$$\{\alpha \in \hat{\mathbb{Q}} \mid h(\alpha) \leq B \text{ et } [\mathbb{Q}(\alpha) : \mathbb{Q}] = d\}.$$

Nous venons de prouver que α est racine du polynôme $F_\alpha \in \mathbb{Q}$ dont les coefficients s_0, \ldots, s_d vérifient $h(s_0, \ldots, s_d) \leq d \log 2 + d^2 B$. Pour conclure il suffit de remarquer que $P^\alpha(\mathbb{Q})$ n’a qu’un
nombre fini de points de hauteur borné, en effet, si \(\left(\frac{p_n}{q_n} : \ldots : \frac{p_0}{q_0} \right) \in \mathbb{P}^n(\mathbb{Q}) \) est de hauteur bornée par \(B \), on a
\[
\forall i \in \{0, \ldots, n\}, \quad \log \max \{ |p_i|, |q_i| \} = h\left(\frac{p_i}{q_i} \right) \leq h\left(\frac{p_0}{q_0} : \ldots : \frac{p_n}{q_n} \right) \leq B.
\]
Il n’existe donc qu’un nombre fini de possibilités pour le polynôme \(F_a \), et a fortiori qu’un nombre fini de possibilités pour \(\alpha \). Ceci termine la preuve du Théorème.

La proposition suivante va nous permettre de généraliser la définition de la mesure de Mahler à des polynômes à plusieurs variables, que nous utiliserons par la suite.

Proposition 2.1 Soit \(F \in \mathbb{C}[x] \), \(F \neq 0 \), on a :
\[
M(F) = \exp \left\{ \frac{1}{2\pi} \int_0^{2\pi} \log |F(e^{it})| dt \right\}.
\]

Démonstration - Ce résultat est une conséquence directe de la formule de Jensen, néanmoins nous donnons ici la démonstration originale de Mahler.

Notons \(\hat{M} \) l’application :
\[
\hat{M} : \mathbb{C}[x] \to \mathbb{R}
\]
\[
P \mapsto \exp \left\{ \frac{1}{2\pi} \int_0^{2\pi} \log |F(e^{it})| dt \right\}
\]
Le but ici est donc de montrer que pour tout polynôme \(F \in \mathbb{C}[x] \) on a \(M(F) = \hat{M}(F) \).

- Remarquons tout d’abord que les deux applications vérifient
\[
\hat{M}(PQ) = \hat{M}(P)\hat{M}(Q) \quad \text{et} \quad \hat{M}(\alpha) = |\alpha|
\]
\[
M(PQ) = M(P)M(Q) \quad \text{et} \quad M(\alpha) = |\alpha| \quad \forall (P, Q, \alpha) \in \mathbb{C}[x] \times \mathbb{C}[x] \times \mathbb{C}
\]
On est ainsi ramené à démontrer le théorème pour les polynômes de la forme \(x - \alpha \), c’est-à-dire :
\[
\forall \alpha \in \mathbb{C}, \quad \frac{1}{2\pi} \int_0^{2\pi} \log |e^{it} - \alpha| dt = \log \left(\max \{1, |\alpha|\} \right)
\]
- En posant \(\alpha = re^{i\theta} \) on obtient :
\[
\frac{1}{2\pi} \int_0^{2\pi} \log |e^{it} - re^{i\theta}| dt = \frac{1}{2\pi} \int_0^{2\pi} \log |e^{it-\theta} - r| dt
\]
\[
= \frac{1}{2\pi} \int_{-\theta}^{0} \log |e^{iu} - r| du
\]
\[
= \frac{1}{2\pi} \int_{0}^{2\pi} \log |e^{iu} - r| du
\]
On peut donc supposer \(\alpha \in \mathbb{R}_+ \); il suffit donc de montrer :
\[
\forall \alpha \in \mathbb{R}_+, \quad \frac{1}{2\pi} \int_0^{2\pi} \log |e^{it} - r| dt = \log \left(\max \{1, r\} \right).
\]

(2.1)
Minoration de hauteurs d'hypersurfaces

• On pose, pour \(r \in \mathbb{R}, \ I(r) = \frac{1}{2\pi} \int_0^{2\pi} \log |e^{it} - r| \, dt \)

\[I(r^2) = \frac{1}{2\pi} \int_0^{2\pi} \log |e^{it} - r^2| \, dt \]

\[= \frac{1}{4\pi} \int_0^{2\pi} \log |e^{it} - r^2| \, dt \quad \text{on pose } t = 2s \]

\[= \frac{1}{2\pi} \int_0^{2\pi} \log |e^{2is} - r^2| \, ds \]

\[= \frac{1}{2\pi} \int_0^{2\pi} \log |e^{is} - r| \, ds + \frac{1}{2\pi} \int_0^{2\pi} \log |e^{is} + r| \, ds \]

\[= 2I(r) \quad \text{en posant } u = s - \pi \text{ dans le second membre.} \]

Montrons à présent (2.1) :

1) Si \(r = 1 \) d'après ce qui précède \(I(1) = 2I(1) \) donc \(I(1) = 0 = \log(\max\{1,1\}) \).

2) Si \(r \neq 1 \), soient \(n \in \mathbb{N} \) et \(m = 2^n \), on a

\[I(r^m) = mI(r) \]

On obtient alors :

\[|r^m - 1| \leq |e^{it} - r^m| \leq r^m + 1 \]

\[\frac{1}{m} \log |r^m - 1| \leq I(r) \leq \frac{1}{m} \log(r^m + 1) \]

\(I(r) \) est encadrée par deux suites tendant vers 0 si \(r < 1 \) et \(\log r \) si \(r > 1 \), donc

\[I(r) = \log(\max\{1, r\}) . \]

\[\blacksquare \]

Définition. Soit \(F \in \mathbb{C}[x_1, \ldots, x_n] \); on définit sa mesure de Mahler en posant \(M(0) = 0 \) et si \(F \neq 0 \) :

\[\log M(F) = \frac{1}{(2\pi)^n} \int_0^{2\pi} \ldots \int_0^{2\pi} \log |F(e^{i\theta_1}, \ldots, e^{i\theta_n})| \, d\theta_1 \ldots d\theta_n . \]

On peut maintenant définir la hauteur normalisée d'un polynôme et d'une hypersurface.

Définition. Soit \(F \in \mathbb{k}[x] \), on définit alors la hauteur normalisée de \(F \) comme

\[\hat{h}(F) = \sum_{\nu \in M_k} \frac{[k : \mathbb{Q}] \nu}{M_\nu(F)} \log (M_\nu(F)) , \]

où \(M_\nu(F) = \begin{cases} \max\{\co\text{eff}(f)\} \quad &\text{si } \nu \nmid \infty \\ M(\sigma F) &\text{si } \nu \mid \infty \end{cases} \)

Définition. Soit \(V \) une hypersurface définie par le polynôme \(F \) (\(F \) étant réduit, i. e. sans facteur carré), on définit la hauteur normalisée de \(V \) comme

\[\hat{h}(V) = \hat{h}(F). \]
II Isogénies.

Soient $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{G}_m^n$ et $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$, on note :

$$x^\lambda = \prod_{i=1}^{n} x_i^{\lambda_i}.$$

Définition. On appelle **isogénie de** \mathbb{G}_m^n, une application φ de \mathbb{G}_m^n dans \mathbb{G}_m^n donnée par :

$$\varphi(\mathbf{x}) = (x^{\lambda_1}, \ldots, x^{\lambda_n}),$$

où les $\lambda_j \in \mathbb{Z}^n$ sont des multi-indices tels que $\det(\lambda_1, \ldots, \lambda_n) \neq 0$.

Lemme 2.1 Soient k un corps de nombres, $P \in k[\mathbf{x}]$ et V l’hypersurface d’équation $P = 0$.

Alors pour toute isogénie φ de \mathbb{G}_m^n on a et pour toute place $\nu \in \mathcal{M}_k$ on a

$$M(P(\varphi(\mathbf{x}))) = M(P).$$

De même, pour toute place finie $\nu \in \mathcal{M}_k$

$$M_{\nu}(P(\varphi(\mathbf{x}))) = M_{\nu}(P).$$

Enfin pour tout point de torsion $\xi \in \mathbb{G}_m^n$, on a $\hat{h}(\xi V) = \hat{h}(V)$.

Démonstration. - On pose $A := (\lambda_1, \ldots, \lambda_n)$. Supposons dans un premier temps la matrice A diagonale, on a :

$$\log M(P(x_1^{\lambda_1}, \ldots, x_n^{\lambda_n})) = \frac{1}{(2\pi)^n} \int_{0}^{2\pi} \cdots \int_{0}^{2\pi} \log|P(e^{i\lambda_1 \theta_1}, \ldots, e^{i\lambda_n \theta_n})| \ d\theta_1 \cdots d\theta_n$$

$$= \frac{(2\pi)^n}{\lambda_1 \cdots \lambda_n} \int_{0}^{2\lambda_1 \pi} \cdots \int_{0}^{2\lambda_n \pi} \log|P(e^{i\theta_1}, \ldots, e^{i\theta_n})| \ du_1 \cdots du_n$$

$$= \log M(P).$$

Supposons maintenant $\det(A) \in \{-1, +1\}$ (i.e. $A \in GL_n(\mathbb{Z})$), l’égalité est claire puisque A induit une bijection de $(S^n)^n$ (changement de variables dans l’intégrale).

Pour le cas général, on utilise la théorie des diviseurs élémentaires : A est équivalente à une matrice diagonale, i.e. il existe $P, Q \in GL_n(\mathbb{Z})$ et $\tilde{A} \in M_n(\mathbb{Z})$ diagonale telles que $A = P \tilde{A} Q$, ce qui précède nous permet alors de conclure le premier point de le lemme.

Le second point est immédiat car les coefficients des deux polynômes sont les mêmes.

Montrons le dernier point. Il existe $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{N}$ tel que $(\xi^{-1})^\lambda = (1, \ldots, 1)$, on a

$$\xi V = \{\xi \mathbf{x} \in \mathbb{G}_m^n \mid P(\mathbf{x}) = 0\} = \{\mathbf{y} \in \mathbb{G}_m^n \mid P(\xi^{-1} \mathbf{y}) = 0\}$$

D’après ce qui précède, $M_{\nu}(P) = M_{\nu}(P(\mathbf{x}^\lambda)) = M_{\nu}(P(\xi^{-1} \mathbf{x}))$, pour toute $\nu \in \mathcal{M}_k$, donc $\hat{h}(\xi V) = \hat{h}(V)$.

\[\blacksquare\]
Minoration de hauteurs d'hypersurfaces

Ce lemme montre donc l'invariance de la mesure de Mahler et de la norme de Gauss en une place finie d'un polynôme par une isogénie de \mathbb{G}_m^n. Nous nous intéresserons plus particulièrement au résultat suivant :

Corollaire 2.1 Soit V une hypersurface de \mathbb{G}_m^n et φ une isogénie de \mathbb{G}_m^n. On a alors

$$\hat{h}(\varphi^{-1}(V)) = \hat{h}(V).$$

III Théorème de Zhang.

Soient V une sous-variété propre de \mathbb{G}_m^n et θ un nombre réel ; on note

$$V(\theta) := \{ \alpha \in V(\mathbb{Q}) \mid h(\alpha) \leq \theta \}.$$

Introduisons la notion de *minimum essentiel* :

$$\mu_{\text{ess}}(V) := \inf \{ \theta \mid V(\theta)^{\text{zar}} = V \},$$

où $V(\theta)^{\text{zar}}$ désigne l'adhérence de Zariski de $V(\theta)$.

Minimum essentiel et hauteur sont très liés. Plus précisément on a la relation suivante, qui est un cas particulier du résultat montré dans [Zh1], théorème 5.2 et [Zh2], théorème 1.10, qui est valable pour toute sous-variété algébrique propre géométriquement irréductible V de \mathbb{G}_m^n :

$$\frac{\hat{h}(V)}{(\dim(V) + 1) \deg(V)} \leq \mu_{\text{ess}}(V) \leq \frac{\hat{h}(V)}{\deg(V)}.$$

Nous montrons dans la suite la deuxième inégalité pour les hypersurfaces, qui seule nous servira, en reprenant la démonstration de [Am-Dal1].

Lemme 2.2 Soit $F \in \mathbb{C}[x]$ de degré $\leq d$ et soit p un nombre premier alors :

$$\prod_{\omega \in \mu_p^d} |F(\omega)| \leq p^d M(F)^{p-1}.$$

Démonstration - Si $F = 0$, alors l'énoncé est clair (car $M(0)=0$). Supposons donc $F \neq 0$ et écrivons

$$F(x) = a(x - \alpha_1) \ldots (x - \alpha_d),$$

avec $a \in \mathbb{C}$ et $\delta \leq d$. On a alors :

$$\prod_{\omega \in \mu_p^d} |F(\omega)| = |a|^{p-1} \prod_{j=1}^{\delta} |1 + \ldots + \alpha_j^{p-1}|$$

$$\leq p^{\delta} |a|^{p-1} \prod_{j=1}^{\delta} \max \{|\alpha_j|, 1\}^{p-1} = p^{\delta} M(P)^{p-1}.$$

\[\sqrt{}\]

\[1\] On désigne par μ_p^d l'ensemble des racines primitives p-ième de l'unité.
Lemme 2.3 Soient $n \in \mathbb{N}^*$, $n \geq 2$, $d_1, \ldots, d_{n-1} \in \mathbb{N}$ et $F \in \mathbb{C}[x_1, \ldots, x_n]$ non nul tel que $\deg_{x_j}(F) \leq d_j$ ($j = 1, \ldots, n-1$).

Alors, pour tous premiers p_1, \ldots, p_{n-1} on a 2

$$\prod_{j=1}^{n-1} \left(\frac{p_j - 1}{p_j} \right)^{-1} \sum_{\omega_j \in \mu_{p_j}} \log M(F(\omega_1, \ldots, \omega_{n-1}, z)) \leq \log M(F) + \sum_{j=1}^{n-1} \frac{d_j \log p_j}{p_j - 1},$$

où $M(F(\omega_1, \ldots, \omega_{n-1}, z))$ désigne la mesure de Mahler du polynôme $F(\omega_1, \ldots, \omega_{n-1}, z)$ de $\mathbb{C}[z]$.

Démonstration - Supposons tout d’abord $n = 2$, et soit $\theta \in [0, 2\pi]$.

D’après le lemme 2.2

$$\frac{1}{p_1 - 1} \sum_{\omega \in \mu_{p_1}} \log |F(\omega, e^{i\theta})| \leq \log M(F(x_1, e^{i\theta})) + \frac{d_1 \log p_1}{p_1 - 1}.$$

En intégrant sur $[0, 2\pi]$ par rapport à θ, on en déduit

$$\frac{1}{p_1 - 1} \sum_{\omega \in \mu_{p_1}} \log |F(\omega, z)| = \frac{1}{2\pi} \int_0^{2\pi} \frac{1}{p_1 - 1} \sum_{\omega \in \mu_{p_1}} \log |F(\omega, e^{i\theta})| d\theta$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} \left(\log M(F(x_1, e^{i\theta})) + \frac{d_1 \log p_1}{p_1 - 1} \right) d\theta$$

$$\leq \log M(F) + \frac{d_1 \log p_1}{p_1 - 1},$$

ce qui montre le lemme pour $n = 2$.

Supposons maintenant, comme hypothèse de récurrence, que ce dernier est vrai pour un certain $n \geq 2$, soient $F \in \mathbb{C}[x_1, \ldots, x_{n+1}]$ un polynôme et p_1, \ldots, p_n des nombres premiers.

Soit, comme précédemment, $\theta \in [0, 2\pi]$; par hypothèse de récurrence on peut écrire,

$$\left(\prod_{j=1}^{n-1} \frac{1}{p_j - 1} \right) \sum_{\omega = (\omega_1, \ldots, \omega_{n-1}) \in \prod_{j=1}^{n-1} \mu_{p_j}}^{\mu_{p_1}} \log |F(\omega_1, \ldots, \omega_{n-1}, x_n, e^{i\theta})|$$

$$\leq \log M(F(x_1, \ldots, x_n, e^{i\theta})) + \sum_{j=1}^{n-1} \frac{d_j \log p_j}{p_j - 1}.$$

Soit maintenant $\omega = (\omega_1, \ldots, \omega_n) \in \prod_{j=1}^{n-1} \mu_{p_j}$. Le lemme 2.2, appliqué à la fonction

$$y \mapsto F(\omega_1, \ldots, \omega_{n-1}, y, e^{i\theta})$$

avec $p = p_n$, donne pour sa part

$$\frac{1}{p_n - 1} \sum_{\omega_n \in \mu_{p_n}} \log |F(\omega_1, \ldots, \omega_{n-1}, \omega_n, e^{i\theta})| \leq \log M(F(\omega_1, \ldots, \omega_{n-1}, y, e^{i\theta})) + \frac{d_n \log p_n}{p_n - 1}.$$

On déduit des deux formules précédentes l’inégalité

2avec les conventions usuelles : $\log(0) = -\infty$ et $-\infty + c = -\infty$, $-\infty \leq c$ pour $c \in \mathbb{R} \cup \{-\infty\}$.

15
Minoration de hauteurs d’hypersurfaces

\[
\left(\prod_{j=1}^{n-1} \frac{1}{p_j - 1} \right) \sum_{\omega \in \mathbb{G}_{n,j}} \log |F(\omega_1, \ldots, \omega_n, e^{ith})| \leq \left(\prod_{j=1}^{n-1} \frac{1}{p_j - 1} \right) \sum_{\omega \in \mathbb{G}_{n,j}} \log M\left(F(\omega_1, \ldots, \omega_{n-1}, x_n, e^{ith})\right) + \frac{d_n \log p_n}{p_n - 1}
\]

\[
\leq \log M\left(F(x_1, \ldots, x_n, e^{ith})\right) + \sum_{j=1}^{n-1} d_j \log p_j \frac{1}{p_j - 1}
\]

\[
\leq \log M\left(F(x_1, \ldots, x_n, e^{ith})\right) + \sum_{j=1}^{n} d_j \log p_j \frac{1}{p_j - 1}.
\]

En intégrant cette inégalité sur \([0, 2\pi]\) par rapport à \(\theta\), on obtient la relation voulue, ce qui montre le lemme.

Lemme 2.4 Soient \(P \in \mathbb{C}[x_1, \ldots, x_n]\) et \(S_1 \times \cdots \times S_n \subset \mathbb{C}^n\) tel que \(\text{Card}(S_i) > d_i\), pour tout \(i\). On pose \(d_i = \deg_{x_i} P_i\) pour \(i = 1, \ldots, n\).

Alors \(P\) est identiquement nul.

Démonstration - On raisonne par récurrence sur \(n\). Pour \(n = 1\) c’est clair.

Supposons donc le lemme vrai jusqu’à rang \(n - 1\). Pour tout \((a_1, \ldots, a_{n-1}) \in S_1 \times \cdots \times S_{n-1}\), le polynôme \(P(a_1, \ldots, a_{n-1}, x_n)\) est nul sur \(S_n\), donc identiquement nul, car \(\text{Card}(S_n) > d_n\). On peut donc appliquer l’hypothèse de récurrence aux polynômes \(F_i\) où

\[
F(x_1, \ldots, x_n) = \sum_{i=1}^{d_n} F_i(x_1, \ldots, x_{n-1}) x_n^i.
\]

Donc \(P\) est identiquement nulle.

16
Proposition 2.2 Soit V une hypersurface définie sur \mathbb{Q} de \mathbb{G}_m^n. \mathbb{Q}-irréductible et soit $\varepsilon \in \mathbb{R}^*_+$. Soit de plus $F \in \mathbb{Z}[x]$ irréductible définissant V. Quitte à renuméroter les variables, on peut supposer $d_n = \deg_{\mathbb{Q}}(F) \geq 1$. On a alors :

(i) Le sous-ensemble
$$
\Gamma = \left\{ (\omega_1, \ldots, \omega_{n-1}, \alpha) \in V \mid \omega_1, \ldots, \omega_{n-1} \in \mathbb{Q}_{\text{tor}}, \alpha \in \mathbb{Q}^*, \ h(\alpha) \leq \hat{h}(V)/d_n + \varepsilon \right\}
$$
de $V(\mathbb{Q})$ est Zariski-dense dans V.

(ii) de même, le sous-ensemble
$$
\hat{\Gamma} = \left\{ (\omega_1 \alpha, \ldots, \omega_{n-1} \alpha) \in V \mid \omega_1, \ldots, \omega_{n-1} \in \mathbb{Q}_{\text{tor}}, \alpha \in \mathbb{Q}^*, \ h(\alpha) \leq \hat{h}(V)/\deg(V) + \varepsilon \right\}
$$
de $V(\mathbb{Q})$ est Zariski-dense dans V.

En particulier on a :
$$
\tilde{\mu}_{\text{ex}}(V) \leq \frac{\hat{h}(V)}{\deg(V)}.
$$

Démonstration - La proposition est facile pour $n = 1$. En effet, dans ce cas
$$
V = \{\alpha_1, \ldots, \alpha_{d_1}\},
$$
où $\alpha = \alpha_1 \in \mathbb{Q}$ et $\alpha_2, \ldots, \alpha_{d_1}$ sont les conjugués de α. On a $\deg(V) = d_1 = \deg F, \hat{h}(V) = h(\alpha)/d_1$, et $V(h(\alpha) + \varepsilon) = \{\alpha_1, \ldots, \alpha_{d_1}\} = V$. Nous supposerons donc pour la suite de la preuve que $n \geq 2$.

Soit N un entier, $N \geq \max\{d_1, \ldots, d_n, 3\}$. Pour toutes racines p_j-ièmes de l’unité ω_j ($1 \leq j \leq n-1$), où les p_j sont des nombres premiers tels que $N < p_1 < \ldots < p_{n-1}$, on a :
$$
\left[\mathbb{Q}(\omega_1, \ldots, \omega_{n-1}) : \mathbb{Q} \right] = (p_1 - 1) \ldots (p_{n-1}).
$$
De plus,
$$
\deg F(\omega_1, \ldots, \omega_{n-1}, z) = d_n.
$$

En effet notons $G(x_1, \ldots, x_{n-1})$ le coefficient de $x_n^{d_n}$ dans F; s’il existe $(\omega_1, \ldots, \omega_{n-1})$ dans $\mu_{p_1}^{d_1} \times \ldots \times \mu_{p_{n-1}}^{d_{n-1}}$, tel que $G(\omega_1, \ldots, \omega_{n-1}) = 0$, on obtient en faisant agir le groupe de Galois $\text{Gal}(\mathbb{Q}(\omega_1, \ldots, \omega_{n-1})/\mathbb{Q})$ sur G que ce dernier est identiquement nul sur $\mu_{p_1}^{d_1} \times \ldots \times \mu_{p_{n-1}}^{d_{n-1}}$. Grâce au lemme précédent, on obtient une contradiction avec le fait que les degrés partiels de G sont strictement inférieurs à $p_1 - 1$.

Fixons donc p_1, \ldots, p_{n-1} et $\omega_1, \ldots, \omega_{n-1}$ comme ci-dessus et notons
$$
P_{\omega}(x) := F(\omega_1, \ldots, \omega_{n-1}, x).
$$
Soit ensuite ν une place de \mathbb{Q}, et notons ν_1, \ldots, ν_r ses extensions à $L = \mathbb{Q}(\omega_1, \ldots, \omega_{n-1})$.

- Si $\nu|\infty$, on a
$$
\sum_{j=1}^r \frac{[L_{\nu_j} : \mathbb{Q}_{\nu_j}]}{[L : \mathbb{Q}]} \log M_{\nu_j}(P_{\omega}) = \left(\prod_{j=1}^{n-1} (p_j - 1)^{-1} \right) \sum_{j=1}^r [L_{\nu_j} : \mathbb{Q}_{\nu_j}] \log M_{\nu_j}(P_{\omega})
$$
$$
= \left(\prod_{j=1}^{n-1} (p_j - 1)^{-1} \right) \sum_{\omega \in \mu_{p_1}^{d_1} \times \ldots \times \mu_{p_{n-1}}^{d_{n-1}}} \log M_{\omega}(P_{\omega}),
$$

17
par le lemme 2.3, on obtient :

\[
\sum_{j=1}^{r} \frac{[L_{e_j} : \mathbb{Q}]}{[L : \mathbb{Q}]} \log M_{e_j}(P_{\omega}) \leq \log M_\nu(F) + \sum_{j=1}^{n-1} \frac{d_j \log p_j}{p_j - 1} \leq \log M_\nu(F) + d_n \varepsilon,
\]

(ici \(M_\nu(F) = M(F) \) car \(\nu \) est une place de \(\mathbb{Q} \) et \(\nu(\infty) \).

- Si \(\nu \uparrow \infty \), l’inégalité ultramétrique nous assure que \(M_{e_j}(P_{\omega}) \leq M_\nu(F) \) pour tout \(j \), en effet, il suffit de remarquer que si \(\omega \) est une racine de l’unité et \(R \in \mathbb{Q}[x] \), \(R(x) = \sum_{k=1}^{d} a_k x^k \), on a

\[
|R(\omega)|_{e_j} = |\sum_{k=1}^{d} a_k \omega^k|_{e_j} \leq \max_{k=1, \ldots, d} |a_k|_{e_j} = |R|_{e_j}
\]

d’où

\[
\sum_{j=1}^{r} \frac{[L_{e_j} : \mathbb{Q}]}{[L : \mathbb{Q}]} \log M_{e_j}(P_{\omega}) \leq \left(\sum_{j=1}^{r} \frac{[L_{e_j} : \mathbb{Q}]}{[L : \mathbb{Q}]} \right) \log M_\nu(P_{\omega}) = \log M_\nu(P_{\omega}).
\]

On a donc

\[
\sum_{\alpha \mid P_{\omega}(\alpha) = 0} h(\alpha) = \hat{h}(P_{\omega})
\]

et

\[
\min_{\alpha \mid P_{\omega}(\alpha) = 0} h(\alpha) \leq \hat{h}(P_{\omega}) \leq \frac{\hat{h}(V)}{d_n} \leq \frac{\hat{h}(V)}{d_n} + \varepsilon.
\]

Considérons maintenant la réunion \(\Omega_N \) des ensembles \(\mu_{p_1^*} \times \cdots \times \mu_{p_{n-1}^*} \) avec \(p_1, \ldots, p_{n-1} \) premiers tels que \(N < p_1 \cdots < p_{n-1} \). On pose

\[
\Gamma' = \left\{ (\omega, \alpha) \in V : \omega \in \Omega_N \text{ et } h(\alpha) \leq \min_{\beta \mid P_{\omega}(\beta) = 0} h(\beta) \right\},
\]

cet ensemble est Zariski-dense dans \(V \). Remarquons tout d’abord que \(\Omega_N \) est Zariski-dense dans \(\mathbb{G}_{m-1} \). En effet dans le cas contraire il est contenu dans une hypersurface algébrique \(W \) définie par un certain polynôme \(Q \in \mathbb{Q}[x] \), avec \(\deg_{q_i} Q = \delta_i \). Pour \(N < p_1 < \cdots < p_{n-1} \) avec \(p_i > \delta_i \) pour tout \(i \), \(Q \) est nul sur \(\mu_{p_1^*} \times \cdots \times \mu_{p_{n-1}^*} \) par définition de \(\Omega_N \), le lemme 2.4 nous dit que \(Q \) est nécessairement identiquement nul, d’où une contradiction. Ceci étant, on en déduit que \(\Gamma' \) est Zariski-dense dans \(V \); le point (i) de la proposition est donc démontré.

Pour montrer que (ii) entraîne (i), on considère l’hypersurface \(\hat{V} \) définie par le polynôme

\[
\hat{F}(x_1, \ldots, x_n) = F(x_1 x_n, \ldots, x_{n-1} x_n, x_n),
\]

ei on remarque que \(\deg_{x_n}(\hat{V}) = \deg(V) \) (où le degré partiel d’une hypersurface est par exemple défini comme étant celui d’une de ses équations réduites), que \(\hat{h}(\hat{V}) = \hat{h}(V) \) (cf lemme 2.1) et enfin que \(\varphi(\Gamma) = \hat{\Gamma} \) où \(\varphi \) est l’isogénie de \(\mathbb{G}_{m-1} \) induite par le changement de variables ci-dessus.

Les dernières assertions sont des conséquences directes des points (i) et (ii). La proposition est maintenant entièrement établie.
Chapitre 3

Construction de la fonction auxiliaire.

Soit $X = (x_{mn})$ est une matrice $M \times N$ à coefficients dans un corps de nombres k avec $\text{rang}(X) = M < N$, si $J \subset \{1, \ldots, N\}$ est un sous-ensemble avec $|J| = M$ éléments, on écrit

$$X_J = (x_{mn}), \quad m = 1, \ldots, M, \quad n \in J.$$

On pose $d = [k : \mathbb{Q}]$. Pour chaque place ν de k on définit la hauteur locale $H_{\nu}(X)$ comme suit (voir [Bo-Va] p. 15):

(i) $H_{\nu}(X) = \max_{|J|=M} |\det X_J|^\frac{\nu}{d} \text{ si } \nu \mid \infty$

(ii) $H_{\nu}(X) = \left(\sum_{|J|=M} |\det X_J|^2 \right)^\frac{\nu}{2d} \text{ si } \nu \not| \infty$

En faisant le produit sur l'ensemble des places on obtient une hauteur globale :

$$H(X) = \prod_{\nu \in \mathcal{M}_k} H_{\nu}(X)$$

Où l'on a repris les notations de [Bo-Va], avec deux petites différences néanmoins :

- Les auteurs normalisent les valeurs absolues : notre $|x|_{\nu}$ correspond à leur $\|x\|_{\nu}$.
- Ils ne considèrent pas de hauteurs logarithmiques : notre $h(x)$ correspond à leur $\log h(x)$.

Notations

Pour $\mu, \lambda \in \mathbb{N}^n$, on pose :

$$\left(\begin{array}{c} \mu \\ \lambda \end{array} \right) = \prod_{j=1}^{n} \left(\begin{array}{c} \mu_j \\ \lambda_j \end{array} \right).$$
Lemme 3.1 Soient \(\alpha \in (\mathbb{Q}^n)^* \) et \(N := (L+n) = \dim_{\mathbb{Q}}(\mathbb{Q}[x_1, \ldots, x_n]_{\leq L}) \). On considère la matrice \((T+n-1) \times N \) définie par
\[
A = \left((\mu) \alpha^\mu \right)
\]
où les lignes (respectivement les colonnes) sont indexées par les multi-indices \(\lambda \in \mathbb{N}^n \) vérifiant \(|\lambda| \leq T - 1 \) (respectivement par les multi-indices \(\mu \in \mathbb{N}^n \) vérifiant \(|\mu| \leq L \)).

Si l'on identifie \(\mathbb{Q}[x_1, \ldots, x_n]_{\leq L} \) à \(\mathbb{Q}^N \) de façon standard, alors : l'ensemble des polynômes de degré nul en \(\alpha \) à un ordre \(\geq T \) est déterminé par
\[
\{ x \in \mathbb{Q}^N \mid Ax = 0 \}.
\]

Démonstration - Soit \(P \) un polynôme de degré au plus \(L \) nul en \(\alpha \) à un ordre \(\geq T \). Il s'agit ici en fait de traduire en termes matriciels le fait que \(\frac{\partial^L P}{\partial x^\lambda}(\alpha) = 0 \) pour tout \(|\lambda| \leq T - 1 \). On pose
\[
P(x) = \sum_{|\mu| \leq L} a_\mu x^\mu.
\]
On a alors :
\[
0 = \frac{\partial^L P}{\partial x^\lambda}(\alpha) = \sum_{|\mu| \leq L} a_\mu \frac{\mu!}{(\mu - \lambda)!} \alpha^{\mu - \lambda}.
\]
D'où, en divisant par \(\lambda! \):
\[
0 = \sum_{|\mu| \leq L} a_\mu \left(\begin{array}{c} \mu \\ \lambda \end{array} \right) \alpha^{\mu - \lambda}.
\]
Les polynômes recherchés sont donc les solutions du système :
\[
A \times (a_\mu)_{|\mu| \leq L} = 0.
\]

Soient \(V \) une hypersurface algébrique propre de \(\mathbb{G}_m^n \subset \mathbb{P}^n \) définie sur \(\mathbb{Q} \) et \(\mathbb{Q} \)-irréductible, et \((P) \) son idéal de définition dans l'anneau \(\mathbb{Q}[x_0, \ldots, x_n] \) où \(V \) est déterminée par le polynôme irréductible (dans \(\mathbb{Z} \) \(P \in \mathbb{Z}[x_0, \ldots, x_n] \) homogène de degré \(D \)).

Soient ensuite \(L \) et \(T \) deux entiers strictement positifs ; remarquons que \((P)^T \) est l'idéal homogène engendré par les polynômes nuls à l'ordre \(T \) sur \(V \). On note
\[
N := \dim_{\mathbb{Q}}(\mathbb{Q}[x_0, \ldots, x_n]_{L} \cup \{0\}) = \dim_{\mathbb{Q}}(\mathbb{Q}[x_1, \ldots, x_n]_{\leq L}) = \left(\frac{L + n}{n} \right).
\]
On pose \(r(T, L) := \dim_{\mathbb{Q}} \left(\left(\mathbb{Q}[x_0, \ldots, x_n]_{L} \cup \{0\}\right)/\mathbb{E}_{T,L} \right) \), où \(\mathbb{E}_{T,L} \) désigne le sous-\(\mathbb{Q} \)-espace vectoriel de \(\mathbb{Q}[x_0, \ldots, x_n]_{L} \cup \{0\} \) engendré par les polynômes homogènes de degré \(L \) nuls à l'ordre \(T \) sur \(V \) (i. e. multiples de \((P)^T \)). On a :
\[
r = \dim_{\mathbb{Q}}(\mathbb{Q}[x_0, \ldots, x_n]_{L} \cup \{0\}) - \dim_{\mathbb{Q}} \mathbb{E}_{T,L}
\]
\[
= N - \left(\frac{L - DT + n}{n} \right).
\]

Théorème 3.1 Avec les notations précédentes, supposons r < N, c’est-à-dire L \geq DT. Il existe une base \((F_1, \ldots, F_{N-r})\) du \(\mathbb{Q}\)-espace vectoriel \(E_{T,L}\) telle que

\[
\sum_{j=1}^{N-r} h(F_j) \leq r \left\{ (T+n) \log(L+1) + L \mu_{\text{ess}}(V) \right\}
\]

où \(h(F_j)\) désigne la hauteur de Weil du point projectif défini par les coefficients de \(F_j\).

De plus, on peut supposer que les polynômes \(F_j\) sont de contenu 1.

Démonstration - Fixons un nombre réel \(\theta > \mu_{\text{ess}}(V)\) et considérons, pour \(d \in \mathbb{N}^*\) l’ensemble

\[
S_d = \left\{ \mu \in V(\bar{\mathbb{Q}}) \mid h(\alpha) \leq \theta \text{ et } [\mathbb{Q}(\alpha) : \mathbb{Q}] \leq d \right\}.
\]

D’après le théorème 2.1, celui-ci est fini, de plus, il est stable sous l’action de \(\text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})\); en effet, \(V\) étant défini sur \(\mathbb{Q}\), pour tout \(\sigma \in \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})\) et tout \(\alpha \in V\), on a \(\sigma(\alpha) \in V\).

On voit que \(S_1 \subset S_j\) si \(1 \leq i \leq j\); de plus, par définition du minimum essentiel, \(S := \bigcup_{d \in \mathbb{N}^*} S_d\) est Zariski-dense dans \(V\).

Considérons maintenant le \(\mathbb{Q}\)-espace vectoriel de dimension finie \(A_d\) engendré par les polynômes de \(\mathbb{Q}[x_0, \ldots, x_n]_L\) nuls sur \(S_d\) à un ordre \(\geq T\), on a

\[
A_1 \supseteq \cdots \supseteq A_d \supseteq \cdots \supseteq E_{T,L}
\]

et \(E_{T,L}\) étant de dimension finie, il existe \(d_0 \in \mathbb{N}\) tel que \(A_d = A_{d_0}\) pour \(d \geq d_0\). Les polynômes de \(A_{d_0}\) (que nous noterons désormais \(A\)) sont alors nuls sur \(S\) à un ordre \(\geq T\) donc sur \(V\). En effet, pour tout \(\lambda \in \mathbb{N}^*\) vérifiant \(|\lambda| \leq T - 1\), le polynôme \(\frac{\partial^\lambda}{\partial x^n}\) est nul sur \(S\), donc sur sur adhérence de Zariski : \(V\). On en déduit l’égalité

\[
A = E_{T,L}.
\]

Pour terminer la démonstration du théorème 3.1 on utilise le lemme 3.1.

Dans la suite on considère \(A\) comme le sous-espace vectoriel de \(\mathbb{Q}[x_1, \ldots, x_n]_{L}\) des polynômes nuls sur \(V\) à un ordre \(\geq T\) (il suffit de désénoncéiser en posant \(x_0 = 1\)).

On considère la matrice \(\left|S_{d_0}\right| \left(\binom{T+n-1}{n} \times \binom{L+n}{n}\right)\) définie par

\[
A = \begin{pmatrix}
\left(\frac{\mu}{\lambda}\right) \alpha^{\mu-\lambda}
\end{pmatrix}
\]

où les lignes (respectivement les colonnes) sont indexées par les couples \((\alpha, \lambda), \text{ où } \alpha \in S_{d_0}\) et \(\lambda \in \mathbb{N}^*\) est un multi-indice tel que \(|\lambda| \leq T - 1\) (respectivement par le multi-indice \(\mu \in \mathbb{N}^*\) tel que \(|\mu| \leq L\)).

Soit \(B\) une sous-matrice de \(A\) de rang maximal (\(B\) est une matrice \(r \times \binom{L+n}{n}\) de rang \(r\)). Si l’on identifie \(\mathbb{Q}[x_1, \ldots, x_n]_{L} \approx \mathbb{Q}^N\) de façon standard, on a donc

\[
A = \left\{ x \in \mathbb{Q}^N \mid Ax = 0 \right\} = \left\{ x \in \mathbb{Q}^N \mid Bx = 0 \right\}.
\]

\(^1\)L’ordre choisi dans \(S_{d_0}\) n’a pas d’importance.
Soit Y une matrice $N \times (N - r)$ à coefficients dans \mathbb{Q} tel que $A = \text{Im} \, Y$. Le théorème 8 de [Bo-Va] appliqué à Y montre alors qu’il existe $N - r$ vecteurs linéairement indépendants $u_1, \ldots, u_{N - r}$ de \mathbb{Q}^N, tels que, si l’on pose $F_i = Y u_i$ pour $i = 1, \ldots, N - r$, on ait
\[
\sum_{j=1}^{N-r} h(F_j) \leq \log H(A) = \log H(Y),
\]
où $H(A)$ est la hauteur (non logarithmique) du sous-espace A (voir [St-Va] p. 499). Remarquons que (F_1, \ldots, F_{N-r}) forme une une base de A.
Par le principe de dualité, (voir [St-Va] p. 500, (2.2)), la hauteur de A est égale à la hauteur de la matrice B (i. e. à la hauteur du sous-espace engendré par les lignes de B). En majorant $H(B)$ par le produit des hauteurs de ses lignes (inégalité de Hadamard, voir [Bo-Va], équation (2.6)), on obtient :
\[
H(B) \leq \max \left\{ \alpha \in S_d, |\lambda| \geq T - 1 ; \ H(b^{(\alpha, \lambda)}) \right\}^T
\log H(B) \leq r \log \max \left\{ \alpha \in S_d, |\lambda| \geq T - 1 ; \ H(b^{(\alpha, \lambda)}) \right\}
\]
ou l’on a noté
\[
b^{(\alpha, \lambda)} = (b^{(\alpha, \lambda)})_{|\mu| \leq L} = \left(\left(\frac{\mu}{\lambda} \right) \alpha^{\mu - \lambda} \right)_{|\mu| \leq L}
\]
les lignes de B.
Soit (α, λ) réalisant ce maximum, on a :
\[
\left(\sum_{|\mu| \leq L} \left(\frac{\mu}{\lambda} \right)^2 \right)^{\frac{1}{2}} \leq \sum_{|\mu| \leq L} \left(\frac{\mu}{\lambda} \right)
\leq \sum_{\mu_1 = 1}^{L} \cdots \sum_{\mu_n = 1}^{L} \left(\frac{\mu_1}{\lambda_1} \right) \cdots \left(\frac{\mu_n}{\lambda_n} \right)
\leq \left(\frac{L + 1}{\lambda_1 + 1} \right) \cdots \left(\frac{L + 1}{\lambda_n + 1} \right)
\leq (L + 1)^{\sum_{i=1}^{n} (\lambda_{i+1})} \leq (L + 1)^{\sum_{i=1}^{n} (\lambda_{i+1})}
\]
où l’on a utilisé $\sum_{\mu=1}^{L} (\lambda)^{\mu} = (L + 1)^{\lambda + 1}$.
En utilisant cette inégalité on trouve, pour toute place archimédienne $\nu \in \mathcal{M}_k$, où k désigne la clôture galoisienne de $\mathbb{Q}(\alpha)$, $[k : \mathbb{Q}] = d$,
\[
H_{\nu}(b^{(\alpha, \lambda)})^d = \left(\sum_{|\mu| \leq L} |b^{(\alpha, \lambda)}|^2 \right)^{\frac{d}{2}} \leq (L + 1)^{(T+n)d_{\nu}} \max \left\{ 1, |\alpha_1|_{\nu}, \ldots, |\alpha_n|_{\nu} \right\}^{Ld_{\nu}}.
\]
Pour ν ultramétrique, on obtient :
\[
H_{\nu}(b^{(\alpha, \lambda)})^d = \max_{|\mu| \leq L} |b^{(\alpha, \lambda)}|^2 \leq \max \left\{ 1, |\alpha_1|_{\nu}, \ldots, |\alpha_n|_{\nu} \right\}^{Ld_{\nu}}.
\]
CHAPITRE 3. CONSTRUCTION DE LA FONCTION AUXILIAIRE.

En faisant le produit sur toutes les places on obtient :

\[H(b^{(\alpha, \lambda)}) \leq (L + 1)^{(T + n) \sum_{v \in \mathbb{P}} h_v} H(\alpha)^{L \delta} \]
\[\delta \log(H(b^{(\alpha, \lambda)})) \leq \delta(T + n) \log(L + 1) + \delta L h(\alpha) \]
\[\log(H(b^{(\alpha, \lambda)})) \leq (T + n) \log(L + 1) + L \theta. \]

On obtient alors :

\[\log H(B) \leq r \left\{ (T + n) \log(L + 1) + L \theta \right\}. \]

On a donc montré que, pour tout \(\theta > \mu_{\text{ens}}(V) \), il existe une base \((F_1, \ldots, F_{N-r}) \) (formée de polynômes que l'on peut supposer de contenu 1) du \(\mathbb{Q} \)-espace vectoriel \(E_{T,L} \) telle que

\[\sum_{j=1}^{N-r} h(F_j) \leq r \left\{ (T + n) \log(L + 1) + L \theta \right\}. \]

On remarque pour finir que l'ensemble des polynômes de \(\mathbb{Q}[x_0, \ldots, x_n]_L \) de contenu 1 et de hauteur bornée est fini (par le théorème 2.1 en identifiant cet ensemble à \(\mathbb{P}^N(\mathbb{Q}) \); on peut donc faire tendre \(\theta \) vers \(\mu_{\text{ens}}(V) \). La preuve du théorème 3.1 est maintenant complète. ■
Minoration de hauteurs d’hypersurfaces
Chapitre 4

Extrapolation.

I Lemme clef de Dobrowolski : cas de plusieurs variables.

Notre résultat principal est une généralisation du théorème de Dobrowolski ; nous sommes ainsi ammené à utiliser son lemme clef dans le cadre plus large de polynômes à n variables.

Théorème 4.1 Soit $F \in \mathbb{Z}[x_1, \ldots, x_n]$ de degré $\leq L$ et nul en $\alpha \in \mathbb{C}_m^{\nu}(\mathbb{Q})$ à un ordre $\geq T$. Pour tout nombre premier $p \in \mathbb{Z}$ et pour tout $\nu \in \mathcal{M}_k$ divisant p, on a la majoration

$$|F(\alpha^p)| \leq p^{-T} \max\{1, |\alpha_1|, \ldots, |\alpha_n|\}^p;$$

où l'on a noté $\alpha^p = (\alpha^p_1, \ldots, \alpha^p_n)$ et $k = \mathbb{Q}(\alpha_1, \ldots, \alpha_n)$.

Démonstration - La démonstration originale de ce théorème utilise des arguments d'algèbre commutative (voir [Am-Da2]) ; nous donnons ici une preuve plus récente, trouvée par [Za].

Soit $\nu \in \mathcal{M}_k$ divisant p, supposons dans un premier temps que $\alpha_1, \ldots, \alpha_n$ soient dans \mathcal{O}_k. On plonge k dans une extension de \mathbb{Q}_p suivant la valuation ν. Soit B la clôture intégrale de \mathbb{Z}_p dans k. D'après [Se, Prop. 12, p. 66], il existe un élément monogène γ pour B. En particulier on a $\alpha_i \in B = \mathbb{Z}_p[\gamma]$ pour tout i :

$$\alpha_i = a_i(\gamma), \ a_i \in \mathbb{Z}_p[x],$$

de plus on pose

$$\beta_i = a_i(\gamma^p) \in B.$$

Par le petit théorème de Fermat on aura en particulier :

$$\alpha_i^p = \beta_i + p\delta_i, \ \delta_i \in B.$$ \hspace{1cm} (4.1)

Enfin on note

$$F_{\lambda_1, \ldots, \lambda_n}(x_1, \ldots, x_n) := \left(\prod_{j=1}^n \frac{1}{\lambda_j!} \left(\frac{\partial}{\partial x_j} \right)^{\lambda_j} \right) F(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n].$$

On va maintenant utiliser le lemme suivant :
Lemme 4.1 Sous les hypothèses précédentes, on a :
\[F(\beta_1, \ldots, \beta_n) \equiv 0 \pmod{p^T B}. \]

Démonstration - Soit \(\Gamma(x) \in \mathbb{Z}_p[x] \) le polynôme minimal de \(\gamma \) sur \(\mathbb{Q}_p \) et soit \(U \) la plus grande puissance de \(\Gamma \) divisant \(G(x) = F(a_1(x), \ldots, a_n(x)) \) (si \(G(x) = 0 \), c'est terminé). Alors la dérivée \(G^{(U)}(x) \) n'est pas divisible par \(\Gamma(x) \). En particulier, il existe un \(n \)-uplet \((\lambda_1, \ldots, \lambda_n) \in \mathbb{N}^n \) avec \(\sum \lambda_j \leq U \) tel que \(F_{\lambda_1, \ldots, \lambda_n}(a_1(x), \ldots, a_n(x)) \) ne soit pas divisible par \(\Gamma(x) \), le polynôme \(G^{(U)}(x) \) appartenant à l'idéal engendré par
\[\left\{ F_{\lambda_1, \ldots, \lambda_n}(a_1(x), \ldots, a_n(x)) \mid \sum \lambda_j \leq U \right\}. \]

En posant \(x = \gamma \) on obtient \(F_{\lambda_1, \ldots, \lambda_n}(a_1, \ldots, a_n) \neq 0 \), d'où \(\lambda_1 + \ldots + \lambda_n \geq T \) et donc \(U \geq T \).
Il vient ensuite que \(\Gamma^T(x) \in \mathbb{Z}_p[x] \) divise \(F(a_1(x), \ldots, a_n(x)) \in \mathbb{Z}_p[x] \); on peut donc écrire :
\[F(a_1(x), \ldots, a_n(x)) = Q(x) \Gamma^T(x), \quad Q \in \mathbb{Z}_p[x]. \]

En posant \(x = \gamma^p \) dans cette équation et en tenant compte du fait que
\[\Gamma(\gamma^p) \equiv (\Gamma(\gamma))^p \equiv 0 \pmod{pB}, \]
on a le résultat voulu.

Si on applique le lemme avec \(F_{\lambda_1, \ldots, \lambda_n} \) à la place de \(F \) et \(T - \lambda_1 - \ldots - \lambda_n \) à la place de \(T \) pour un \(n \)-uplet quelconque \((\lambda_1, \ldots, \lambda_n) \) vérifiant \(\sum \lambda_j \leq T \) on obtient :
\[F_{\lambda_1, \ldots, \lambda_n}(\beta_1, \ldots, \beta_n) \equiv 0 \pmod{p^{T-\lambda_1-\ldots-\lambda_n} B}. \tag{4.2} \]

Enfin, en utilisant (4.1) et la formule de Taylor :
\[F(\alpha_1^p, \ldots, \alpha_n^p) = \sum_{\lambda_1, \ldots, \lambda_n \geq 0} p^{\lambda_1 + \ldots + \lambda_n} \delta_1^{\lambda_1} \ldots \delta_n^{\lambda_n} F_{\lambda_1, \ldots, \lambda_n}(\beta_1, \ldots, \beta_n). \]

On remarque que \(p^{\lambda_1 + \ldots + \lambda_n} \delta_1^{\lambda_1} \ldots \delta_n^{\lambda_n} F_{\lambda_1, \ldots, \lambda_n}(\beta_1, \ldots, \beta_n) \) est divisible par \(p^T \) dans \(B \) pour tout \((\lambda_1, \ldots, \lambda_n) \in \mathbb{N}^n \); en effet si \(\sum \lambda_j \geq T \), c'est évident, et dans le cas contraire, il suffit d'utiliser (4.2). Le théorème est donc démontré sous l'hypothèse que \(\alpha_1, \ldots, \alpha_n \) soient des entiers algébriques.

Dans le cas général, on se ramène au cas précédent en utilisant le lemme suivant qui est un corollaire du théorème d'approximation forte :

Lemme 4.2 Soient \(k \) un corps de nombres, \(\alpha_1, \ldots, \alpha_n \) des éléments de \(k \) et \(\nu \) une place finie de \(k \). Il existe alors un élément \(\beta \in \mathcal{O}_k \) tel que
\[\beta \alpha_1, \ldots, \beta \alpha_n \in \mathcal{O}_k \]
et
\[|\beta|_\nu = \max\{1, |\alpha_1|_\nu, \ldots, |\alpha_n|_\nu\}^{-1}. \]
Démonstration - Fixons une place archimédienne quelconque \(v_0 \), et notons \(\Sigma \) l’ensemble fini :
\[
\Sigma = \left\{ v \in \mathcal{M}_k, v \uparrow \infty \text{ et } \max(1, |\alpha_1|_v, \ldots, |\alpha_n|_v) > 1 \right\} \cup \{ \nu \}.
\]
Pour toute place \(v \in \Sigma \), notons aussi \(\nu^{-1} \) celui des éléments \(\alpha_1, \ldots, \alpha_n \) (vu comme des éléments du complété \(k_v \) de \(k \) en \(v \)) de valeur absolue maximale en \(v \) (si \(v = \nu \) et si \(\max_{1 \leq i \leq n} \{ |\alpha_i|_v \} < 1 \), on posera \(0_v = 1 \)). D’après le théorème de [Ca-Fr], chapitre II, §15, page 67, il existe un élément \(\beta \in k \) tel que
\[
\begin{cases}
|\beta - 0|_v < \max(1, |\alpha_1|_v, \ldots, |\alpha_n|_v)^{-1}, & \text{pour tout } v \in \Sigma; \\
|\beta|_v \leq 1, & \text{si } v \notin \Sigma \cup \{ \nu_0 \}.
\end{cases}
\]
Sachant que \(0_v = \max(1, |\alpha_1|_v, \ldots, |\alpha_n|_v)^{-1} \) pour tout \(v \in \Sigma \) et en utilisant l’inégalité ultramétrique, on en déduit :
\[
\begin{cases}
|\beta|_v = \max(1, |\alpha_1|_v, \ldots, |\alpha_n|_v)^{-1}, & \text{pour tout } v \in \Sigma, \\
|\beta|_v \leq 1, & \text{si } v \notin \Sigma \cup \{ \nu_0 \}.
\end{cases}
\]
En particulier, pour toute place finie \(v \) de \(k \) on a \(|\beta|_v \leq 1 \) (et donc \(\beta \in \mathcal{O}_k \)); de même, pour tout \(i, 1 \leq i \leq n \), \(|\beta\alpha_i|_v \leq |\beta|_v \max(1, |\alpha_1|_v, \ldots, |\alpha_n|_v) \leq 1 \) (et donc \(\beta\alpha_i \in \mathcal{O}_k \)). Enfin, on a bien \(|\beta|_v = \max(1, |\alpha_1|_v, \ldots, |\alpha_n|_v)^{-1} \) (car \(v \in \Sigma \)). Le lemme est donc établi.

Terminons à présent la démonstration du théorème. Fixons un tel \(\beta \); le polynôme
\[
G(x_0, \ldots, x_n) = x_0^T F\left(\frac{x_1}{x_0}, \ldots, \frac{x_n}{x_0} \right) \in \mathbb{Z}[x_0, \ldots, x_n]
\]
est nul à un ordre \(\geq T \) en \((\beta, \beta\alpha_1, \ldots, \beta\alpha_n) \in \mathcal{O}_k^{n+1} \), et donc
\[
|G(\beta^p, \beta^p \alpha_1^p, \ldots, \beta^p \alpha_n^p)|_v \leq p^{-T}
\]
par la première partie de la preuve. D’autre part,
\[
|G(\beta^p, \beta^p \alpha_1^p, \ldots, \beta^p \alpha_n^p)|_v = |\beta|_v^p |F(\alpha^p)|_v = |F(\alpha^p)|_v \max(1, |\alpha_1|_v, \ldots, |\alpha_n|_v)^{-pL}.
\]
Le théorème est donc maintenant complètement démontré.

II Extrapolation.

Lemme 4.3 Soit \(V \) une sous-variété propre de \(\mathbb{G}_m^n \subset \mathbb{P}^n \), définie sur \(\mathbb{Q} \) et \(\mathbb{Q} \)-irréductible, et soit \(F \) un élément de \(\mathbb{Z}[x_1, \ldots, x_n] \), de degré \(\leq L \), de contenu 1, nul sur \(V \) à un ordre \(\geq T \). Soit aussi \(p \) un nombre premier tel que
\[
-T \log p + h(F) + n \log(L + 1) + pL\mu_{\text{rat}}(V) < 0.
\]
Alors, \(F \) est identiquement nul sur \(\mathbb{P}V \).

27
DÉMONSTRATION - Soit h_0 un nombre réel, $h_0 > \mu_{\text{ess}}(V)$ et tel que

$$-T \log p + h(F) + n \log (L + 1) + pLh_0 < 0.$$

Il suffit de montrer que pour tout $\alpha \in V(\mathbb{Q})$ de hauteur $h(\alpha) \leq h_0$ on a $F(\alpha^p) = 0$.

Soit donc $\alpha \in V(\mathbb{Q})$ de hauteur $h(\alpha) \leq h_0$, notons L la clôture galoisienne de $\mathbb{Q}(\alpha)$, et supposons $F(\alpha^p) \neq 0$. Soit ν une place de L, F étant de la forme

$$F(x_1, \ldots, x_n) = \sum_{|\lambda| \leq L} a_\lambda x_1^{\lambda_1} \cdots x_n^{\lambda_n}$$
d'où

$$F(\alpha^p) = \sum_{|\lambda| \leq L} a_\lambda \alpha_1^{\lambda_1} \cdots \alpha_n^{\lambda_n}$$

on obtient :

- si ν est archimédien (rappelons que $|F|_\nu$ est le maximum des coefficients de F pour ν)
 $$|F(\alpha^p)|_\nu \leq (L + 1)^n |F|_\nu \max(1, |\alpha_1|_\nu, \ldots, |\alpha_n|_\nu)^pL$$

- si $\nu \in \mathcal{M}_k$ est non-archimédien,
 $$|F(\alpha^p)|_\nu \leq \max(1, |\alpha_1|_\nu, \ldots, |\alpha_n|_\nu)^pL.$$

De plus, si $\nu | p$, le théorème 4.1 montre que

$$|F(\alpha^p)|_\nu \leq p^{-T} \max(1, |\alpha_1|_\nu, \ldots, |\alpha_n|_\nu)^pL.$$

Comme $F(\alpha^p) \neq 0$, on a par la formule du produit,

$$\prod_{\nu \in \mathcal{M}_L} |F(\alpha^p)|_{\nu}^{\frac{[\nu : \mathbb{Q}]}{[L : \mathbb{Q}]/[\nu : \mathbb{Q}]}} = 1.$$

Le polynôme F étant à coefficients dans \mathbb{Z} et de contenu 1, sa hauteur (qui est, rappelons le, la hauteur de Weil du point projectif défini par ses coefficients) vérifie

$$h(F) = \log \max \{|\text{coeff } F|\} = \log |F|_\infty \quad \text{si } \nu | \infty.$$

En passant au log, et en utilisant les trois majorations obtenues ci-dessus, où l'on note $d_\nu := [\nu : \mathbb{Q}_\nu]$, $d := [L : \mathbb{Q}]$ et $\log^+(|\alpha|_\nu) := \log(\max(1, |\alpha_1|_\nu, \ldots, |\alpha_n|_\nu))$,

$$0 = \sum_{\nu \in \mathcal{M}_L} \frac{d_\nu}{d} \log |F(\alpha^p)|_\nu$$

$$\leq \sum_{\nu \in \mathcal{M}_L, \text{arch.}, \nu | p} \frac{d_\nu}{d} \left(n \log(L + 1) + \log |F|_\nu + pL \log^+(|\alpha|_\nu)\right)$$

$$+ \sum_{\nu \in \mathcal{M}_L, \text{arch.}, \nu | p} \frac{d_\nu}{d} pL \log^+(|\alpha|_\nu) + \sum_{\nu \in \mathcal{M}_L, \nu | p} \frac{d_\nu}{d} \left(pL \log^+(|\alpha|_\nu) - T \log p\right)$$

$$\leq \left(n \log(L + 1) + h(F)\right) \sum_{\nu \in \mathcal{M}_L, \nu | p} \frac{d_\nu}{d} + pL \sum_{\nu \in \mathcal{M}_L, \nu | p} \frac{d_\nu}{d} \log^+(|\alpha|_\nu) - T \log p \sum_{\nu \in \mathcal{M}_L, \nu | p} \frac{d_\nu}{d}$$

$$\leq -T \log p + h(F) + n \log(L + 1) + pLh(\alpha)$$

$$\leq -T \log p + h(F) + n \log(L + 1) + pLh(\alpha),$$

ce qui contredit l'hypothèse sur h_0 donc $F(\alpha^p) = 0$. Le lemme 4.3 est ainsi établi.

28
Chapitre 5

Démonstration du théorème principal.

Le but de ce mémoire est, rappelons le, de montrer qu’il existe une constante \(C > 0 \) telle que, pour toute hypersurface \(\mathbb{Q} \)-irréductible \(V \) de \(\mathbb{C}^n \) de degré \(D \) qui n’est pas réunion de translatés de sous-groupes algébriques par des points de torsion de \(\mathbb{C}^n \) on ait :

\[
\hat{h}(V) \geq \frac{1}{C} \left(\frac{\log \left(n \log(8nD) \right)}{n \log(8nD)} \right)^3.
\]

Supposons l’inégalité fausse pour \(C = C_0^4 = 5^6 \). En utilisant la proposition 2.2 (théorème de Zhang) : \(\hat{\mu}_{\text{en}}(V) \leq \frac{1}{C} \hat{h}(V) \), on a :

\[
\hat{\mu}_{\text{en}}(V) < \frac{1}{C_0^4 D} \left(\frac{\log \left(n \log(8nD) \right)}{n \log(8nD)} \right)^3. \tag{5.1}
\]

(Pour une certaine hypersurface \(V \) de degré \(D \) définie sur \(\mathbb{Q} \) et \(\mathbb{Q} \)-irréductible.)

On choisit ici dans un premier temps des paramètres \(T, L, \) et \(N \) afin de pouvoir utiliser les résultats précédents.

On supposera jusqu’à la fin que \(n \geq 2 \), le cas \(n = 1 \) ayant été montré par [Vo]. En particulier on aura \(\log \left(n \log 8nD \right) \geq 17 \).

I Choix des paramètres et fonction auxiliaire.

\[
\begin{align*}
T &= \left[C_0 \log(8nD) \right] \quad (C_0 = 5) \\
L &= DT^2 \\
N &= C_0^4 \times \frac{(n \log(8nD))^2}{\log \left(n \log(8nD) \right)}
\end{align*}
\]

Notons que \(T \geq \lceil C_0 \cdot e \rceil = 12, L \geq 144 \) et \(N \geq C_0^4 \cdot (2 \log 16)^2 / \log(2 \log 16) \geq 2800 \).

Lemme 5.1 On a les inégalités suivantes :

Minoration de hauteurs d'hypersurfaces

(i) $T - 1 \geq 2n$

(ii) $\log(L + 1) \leq 2,5 \times \log(8nD)$,

(iii) $T \log(N/2) \geq 1,99C_0n \log(8nD)$

Démonstration - (i) On a

$$T - 1 \geq nC_0 \frac{\log 8nD}{\log n + \log \log 8nD} - 2$$

$$\geq n \left(C_0 \frac{1}{1 + e^{-r}} - \frac{2}{n} \right)$$

$$\geq 2n.$$

Dans les points suivants on utilisera la majoration

$$\forall a, x \in [1, +\infty[, \quad \frac{\log x - \log a}{x} \leq \frac{1}{ae}. \quad (5.2)$$

(ii) On a

$$\frac{\log L}{\log(8nD)} \leq \frac{\log D + 2 \log C_0 + 2 \log n + 2 \log \log(8nD)}{\log(8nD)}$$

$$\leq \frac{2 \log(8nD) - 2 \log 8 + 2 \log C_0 + 2 \log \log(8nD)}{\log(8nD)}$$

$$\leq 2 + \frac{2 \log(8nD) - \log(8/C_0)}{\log(8nD)}$$

donc, d'après (5.2), $\frac{\log L}{\log(8nD)} \leq 2 + \frac{C_0}{\log(8nD)} \leq 2,46, ainsi, comme L \geq 144, on a \log(L + 1) \leq 2,5 \log(8nD)$.

(iii) On a

$$(T + 1) \log(N/2) \geq nC_0 \log(8nD) \left(2 + \frac{\log(8nD/2) - \log(\log(8nD))}{\log(\log(8nD))} \right)$$

Si $\log(n \log(8nD)) \geq 12$ nous avons $T \geq [C_0 e^{12}/12] \geq 10^4$ or, d’après (5.2) :

$$(T + 1) \log(N/2) \geq 1,995C_0n \log(8nD)$$

d'où le résultat.

Enfin, de façon générale $T \geq [C_0 e] = 13$ ainsi, si $\log(n \log(8nD)) < 12 \leq C_0/2$, nous avons

$$(T + 1) \log(N/2) \geq \left(2 + \frac{\log(8nD/2) - 12}{12} \right) \geq 2,2C_0n \log(8nD) \geq \frac{T + 1}{T} 2C_0n \log(8nD)$$

d'où le résultat.

\[\Box\]

Lemme 5.2 Sous l'hypothèse 5.1, il existe un polynôme non nul $F \in \mathbb{Z}[x_1, \ldots, x_n]$ de degré $\leq L$ qui s'annule sur $[p]V$ pour tout premier $p \in [N/2, N]$.

DÉMONSTRATION - Appliquons le théorème 3.1 à V ; ce dernier montre qu’il existe un polynôme non nul $F \in \mathbb{Z}[x_1, \ldots, x_n]$, de contenu 1 et de degré $\leq L$, qui est nul sur V à un ordre $\geq T$ et tel que

$$
 h(F) \leq k \left\{ (T + n) \log(L + 1) + L \mu_{\text{ess}}(V) \right\},
$$

où

$$
 k = \frac{(L + n)}{(L - D T + n)} - 1 = \left(\frac{(L + n)!}{n!L} \times \frac{(L - D T)!}{(L - D T + n)!} \right) - 1
$$

Soit p un nombre premier vérifiant $N/2 \leq p \leq N$ et notons

$$
 \varepsilon := -T \log p + h(F) + n \log(L + 1) + p L \mu_{\text{ess}}(V) \\
 \leq -T \log(N/2) + (k(T + n) + n) \log(L + 1) + (N + k) L \mu_{\text{ess}}(V).
$$

Le lemme 4.3 nous assure que ce lemme est vrai si $\varepsilon < 0$; il suffit donc de montrer que notre choix de paramètres assure cette condition. Majorons dans un premier temps k :

$$
 k = \frac{(L + n)}{(L - D T + n)} - 1 = \left(\frac{(L + n)!}{n!L} \times \frac{(L - D T)!}{(L - D T + n)!} \right) - 1
$$

$$
 = \prod_{i=1}^{n} \frac{L + i}{L - D T + i} - 1 \leq \left(\frac{L}{L - D T} \right)^n - 1 = \left(1 + \frac{1}{T - 1} \right)^n - 1
$$

Le point (i) du lemme 5.1 donne :

$$
 k \leq \left(1 + \frac{1}{T - 1} \right)^n - 1 \leq \left(1 + \frac{1}{2 n C_0} \right)^n - 1 \leq e^\frac{1}{T} - 1,
$$

par l’inégalité des accroissements finis on en déduit une deuxième majoration :

$$
 k \leq \left(1 + \frac{1}{T - 1} \right)^n - 1 \leq \frac{n}{T - 1} \left(\frac{1}{T - 1} \right)^{n-1} = \frac{n}{T} \left(1 + \frac{1}{T - 1} \right)^n \leq \frac{n}{T} e^\frac{1}{T}
$$

En particulier $k(T + n) + n \leq 2 n e^\frac{1}{T}$.

On a ainsi (car $100 k \leq N$)

$$
 \varepsilon \leq -T \log(N/2) + 2 n e^\frac{1}{T} \log(L + 1) + 1, 01 N L \mu_{\text{ess}}(V),
$$

Majorons $N L \mu_{\text{ess}}(V)$ en utilisant l’inégalité (5.1) :

$$
 N L \mu_{\text{ess}}(V) < C_0^4 \left(\frac{n \log(8 n D)}{\log(n \log(8 n D))} \right)^2 \times D C_0^2 \left(\frac{n \log(8 n D)}{\log(n \log(8 n D))} \right)^2 \times \frac{1}{C_0^3 D} \left(\frac{\log(n \log(8 n D))}{n \log(8 n D)} \right)^3
$$

$$
 < n \log(8 n D)
$$

En reportant ceci et les estimations du lemme 5.1 dans l’inégalité précédente, on obtient :

$$
 \varepsilon \leq n \log(8 n D) \left(-1, 99 C_0 + 5 e^\frac{1}{T} + 1, 01 \right) < 0,
$$

d’où le lemme. \qed
II Conclusion.

- Notons Γ l’ensemble des nombres premiers dans $[N/2, N]$. Sous l’hypothèse (5.1), d’après le lemme 5.2, il existe un polynôme non nul $F \in \mathbb{Z}[x_1, \ldots, x_n]$ de degré $\leq L$ qui s’annule sur $[p]V$ pour tout premier $p \in \Gamma$, autrement dit on a l’inclusion :

$$\left(\bigcup_{p \in \Gamma} [p]V \right) \subset \{ F = 0 \}.$$

Les deux variétés étant de même dimension $(n-1)$ il vient :

$$\deg \left(\bigcup_{p \in \Gamma} [p]V \right) \leq L.$$

Pour arriver à contredire l’hypothèse 5.1 et montrer ainsi le théorème, nous allons montrer l’énégalité inverse. Nous allons voir que pour à « peu près » tous les nombres premiers p, le degré de $[p]V$ se comporte bien. Plus précisément si W_1, \ldots, W_k désignent les composantes géométriquement irréductible de V posons

$$E(V) := \{ l \in \mathbb{Z}; i, j \mid i < j, [l](W_i) = [l](W_j) \} \cup \{ l \in \mathbb{Z}; i \mid \deg([l]W_i) < \deg(W_i) \}.$$

Comme V n’est pas de torsion, la proposition 2.4 de [Am-Da2] nous donne :

$$\deg \left(\bigcup_{p \in \Gamma} [p]V \right) \geq (|\Gamma| - |E(V)|)D \geq \left(\pi(N) - \pi(N/2) - \frac{n}{\log 2} \log D \right)D$$

- Nous aurons besoin d’un encadrement précis de $\pi(N)$, nous utilisons pour cela le théorème 1 de [Ro-Sc] :

$$\frac{x}{\log x} + \frac{3x}{2(\log x)^2} \geq \pi(x) > \frac{x}{\log x} + \frac{x}{2(\log x)^2} \text{ pour } x \geq 59$$

Si on note $c_N := \log(N/2)/\log(N)$ on obtient :

$$\pi(N) - \pi(N/2) \geq \frac{N}{\log N} + \frac{N}{2(\log N)^2} - \left(\frac{N}{2c_N \log N} + \frac{3N}{4c_N \log N} \right)$$

$$> \frac{N}{\log N} \left(1 - \frac{1}{2c_N} - \left(\frac{3}{4c_N^2} - \frac{1}{2} \right) \frac{1}{\log N} \right)$$

ainsi, comme $n \geq 2800$ nous avons $\pi(N) - \pi(N/2) \geq 0,4 \frac{N}{\log N}$ car $N \geq 2800$.

- Nous pouvons maintenant conclure, nous avons

$$\frac{N}{\log N} \geq \frac{C_0^4}{2 + 4 \log C_0} \left(\frac{n \log (8nD)}{\log (n \log (8nD))} \right)^2$$

ainsi

$$\deg \left(\bigcup_{p \in \Lambda} [p]V \right) \geq \left(\frac{0,4n}{\log N} - \frac{n \log (8nD)}{\log 2} \right)D$$

$$\geq \left(\frac{0,4C_0^2}{2 + 4 \log C_0} - \frac{1}{(\log 2)C_0^2} \right)D \left(C_0^4 \frac{n \log (8nD)}{\log (n \log (8nD))} \right)^2$$

$$> L$$

32
Chapitre 6

Annexe : petits rappels de géométrie algébrique.

Soient $I \subset k[x_1, \ldots, x_n]$ et $V \subset k^n$, on note

$$Z(I) = \{ \alpha \in k^n \mid P(\alpha) = 0, \forall P \in I \}$$

$$I_V = \{ P \in k[x_1, \ldots, x_n] \mid P(\alpha) = 0, \forall \alpha \in V \}$$

Définition. Une variété algébrique affine V est un ensemble de la forme $V = Z(I)$, où I est un idéal de $k[x]$. On dit que V est définie sur k si son idéal I_V peut être engendré par des polynômes de $k[x]$.

Définition. Soit V une variété algébrique (affine) définie sur k. On dit que V est k-irréductible si elle ne peut s'écrire comme union de deux sous-variétés propres définies sur k, ce qui revient à dire que I_V est premier.

On dit que V est géométriquement irréductible si elle est \mathbb{Q}-irréductible.

Exemple : le polynôme $x^4 - 5y^2$ définit une hypersurface de \mathbb{C}^2, irréductible sur \mathbb{Q}, mais sur $\mathbb{Q}(\sqrt{5})$ on a $Z(x^4 - 5y^2) = Z(x^2 - \sqrt{5}y) \cup Z(x^2 + \sqrt{5}y)$.

On ne s'intéressera principalement dans la suite qu'aux hypersurfaces algébriques, qui sont plus faciles à manipuler :

Définition. On appelle hypersurface algébrique (définie sur k) une variété algébrique définie par les zéros d’un polynôme de $k[x]$; i. e. il existe $F \in k[x]$ tel que $V = Z((F))$ (I_V est principal).

Remarques :
- Une hypersurface V est irréductible sur k si et seulement s'il existe $F \in k[x]$ irréductible sur k représentant V.
- Le degré de V est le plus petit des degrés des polynômes représentant V.
Minoration de hauteurs d'hypersurfaces
Bibliographie

Minoration de hauteurs d’hypersurfaces

