Licence 3 Mathématiques
Espaces métriques, TD n° 4

Exercice I

On munit \mathbb{R}^2 de la norme euclidienne. Donner la nature topologique des ensembles suivants :

1. $A := \{(x, y) \in \mathbb{R}^2 \mid x^2 - y^2 - 2xy \leq 1\}$;
2. $B := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 7, x + y \geq 1\}$;
3. $C := \{(x, y) \in \mathbb{R}^2 \mid 2x^2 + 3y^2 < 1, y \geq 0\}$;
4. $D := \{(x, y) \in \mathbb{R}^2 \mid xy = 1, x > 0\}$;
5. $E := \{(x, y) \in \mathbb{R}^2 \mid (\cos(x))^2 + y^2 \leq 0\}$;
6. $F := \{(x, y) \in \mathbb{R}^2 \mid \sin(x + y) > y^2 + 1\}$.

Exercice II

Soient E et F deux \mathbb{R}-espaces vectoriels normés, on note B_E la boule unité fermée de E. Soit u une application de E dans F.

1. On suppose ici que $u(B_E)$ est bornée dans F et que u vérifie

$$\forall x, y \in E, \ u(x + y) = u(x) + u(y).$$

(a) Pour tout $x \in E$ et tout $r \in \mathbb{Q}$, calculer $u(rx)$.
(b) Montrer qu’il existe un réel M strictement positif tel que

$$\forall x \in E, \ |u(x)| \leq M\|x\|.$$

(c) Montrer que u est continue et linéaire.

2. Réciproquement montrer que si u est linéaire et continue, alors elle est lipschitzienne.

Exercice III

On note $l^\infty(\mathbb{N}, \mathbb{R})$ l’espace des suites réelles bornées, et $C_0(\mathbb{N}, \mathbb{R})$ l’espace des suites réelles qui convergent vers 0.

1. Montrer que l’on définit bien une distance sur $l^\infty(\mathbb{N}, \mathbb{R})$ en posant $d(x, y) = \sup_n |x(n) - y(n)|$.
2. Montrer que $C_0(\mathbb{N}, \mathbb{R})$ est fermé dans $l^\infty(\mathbb{N}, \mathbb{R})$.
3. Montrer que l’ensemble des suites nulles à partir d’un certain rang est dense dans $C_0(\mathbb{N}, \mathbb{R})$.
Exercice IV

Soit dans un espace métrique (X, d) une suite (x_n) telle que les trois sous-suites (x_{2n}), (x_{2n+1}), et (x_{3n}) convergent. Montrer que la suite elle-même converge.

Exercice V

Soit (E, d) un espace métrique et soit A une partie non vide de E.

1. Montrer que l’application

$$\varphi : E \rightarrow \mathbb{R}$$

$$x \mapsto d(x, A)$$

est bien définie.

2. Montrer que, pour tout x dans E, on a $d(x, A) = d(x, \overline{A})$ et $d(x, A) = 0$ si et seulement si $x \in \overline{A}$.

3. Montrer que φ est 1-lipschitzienne.

4. On suppose ici $A \neq E$. Montrer que, pour tout $\varepsilon \in [0, +\infty]$, l’ensemble

$$\{ x \in E \mid d(x, E \setminus A) \geq \varepsilon \}$$

est un fermé de E.

5. Montrer que tout ouvert de E est réunion dénombrable de fermés.

6. Soient F_1 et F_2 deux fermés disjoints non vides de E.

Montrer qu’il existe deux ouverts disjoints O_1 et O_2 tels que $O_1 \supseteq F_1$ et $O_2 \supseteq F_2$ (on pourra utiliser l’application : $x \mapsto d(x, F_1) - d(x, F_2)$).

Exercice VI

Soient $E := \mathbb{R} \cup \{-\infty, +\infty\}$ et $f : E \rightarrow \mathbb{R}$ définie par :

$$f : E \rightarrow \mathbb{R}$$

$$x \mapsto \begin{cases}
\arctg x & \text{si } x \in \mathbb{R} \\
\frac{-\pi}{2} & \text{si } x = -\infty \\
\frac{\pi}{2} & \text{si } x = +\infty
\end{cases}$$

1. Montrer que l’application d définie sur $E \times E$ par $d(x, y) = |f(x) - f(y)|$ est une distance bornée sur E.

2. Montrer que la distance d induit sur \mathbb{R} la même topologie que celle définie par la norme euclidienne $|\cdot|$ (c’est-à-dire définissent les mêmes fermés). Les distances d et $|\cdot|$ Sont-elles équivalentes sur \mathbb{R} ?

3. Montrer que (E, d) est homéomorphe à un intervalle fermé borné de $(\mathbb{R}, |\cdot|)$.