Licence 3 Mathématiques
Espaces métriques - EM51

Durée : 2 heures.

Chaque candidat doit, au début de l'épreuve, porter son nom dans le coin de la copie qu'il cachera par collage après avoir été pointé. Il devra en outre porter son numéro de place sur chacune des copies, intercalaires, ou pièces annexées.

Documents et calculatrices non autorisés. Barème donné à titre indicatif.

Questions de cours (3 points)

Démontrer les résultats suivants :

1. Soit $(V, \| \cdot \|)$ un espace vectoriel normé. Soient a un élément de E et r un réel positif ou nul. La boule ouverte $B(a, r)$ est convexe et admet une symétrie centrale par rapport à a.

2. Toute suite de Cauchy d’un espace métrique (E,d) est bornée.

Exercice I (6 points)

Dans cet exercice, on munit \mathbb{R} de la valeur absolue usuelle et \mathbb{R}^2 de la distance euclidienne. Les ensembles suivants sont-ils ouverts, fermés ?

1. $A := \left\{ x \in \mathbb{R} \mid \exists n \in \mathbb{N}, x = \frac{n}{1+n}\right\}$

2. $B := \left\{ x \in \mathbb{R} \mid \frac{1}{2} \leq x^2 \leq -x\right\}$

3. $C := \left\{ (x, y) \in \mathbb{R}^2 \mid x + y \leq y^2\right\}$

4. $D := \left\{ (x, y) \in \mathbb{R}^2 \mid -1 < x^2 + y^2 - 2xy \leq 1\right\}$

Exercice II (5 points)

Pour $n, m \in \mathbb{N}^*$, on pose $d(n, m) = |\frac{1}{n} - \frac{1}{m}|$.

1. Montrer que d est une distance sur \mathbb{N}^*.

2. Montrer que toute partie de (\mathbb{N}^*, d) est ouverte.

3. Cette distance est-elle topologiquement équivalente à la distance triviale ?

4. La distance d est-elle (métriquement) équivalente à celle induite par la valeur absolue sur \mathbb{R} ?

5. L’espace (\mathbb{N}^*, d) est-il complet, c’est-à-dire une suite de Cauchy pour la distance d est-elle nécessairement convergente dans \mathbb{N}^* ?

.../...
Exercice III (5 points)

Étant donnés deux espaces métriques (E, δ) et (E', δ'), une application $\psi : (E, \delta) \to (E', \delta')$ est dite ouverte si l'image par ψ d’un ouvert de (E, δ) est un ouvert de (E', δ').

Soit n un entier strictement positif ; on munit \mathbb{R}^n d’une norme $\| \cdot \|$.

1. On munit \mathbb{R}_+ de la distance induite par la valeur absolue usuelle sur \mathbb{R}. Montrer que l’application $\psi : \mathbb{R}^n \to \mathbb{R}_+$ définie par $x \mapsto \|x\|$ est ouverte (on pourra commencer par montrer que l’image d’une boule ouverte est à la fois une partie ouverte dans \mathbb{R}_+ et un intervalle).

2. On considère un espace métrique (X, d) et une application ouverte $f : X \to \mathbb{R}^n$. Soit A une partie non vide de X. Montrer que, pour tout élément a dans l’intérieur de A, on a

$$\|f(a)\| \leq \sup_{x \in A} \|f(x)\|.$$

Exercice IV (4 points)

1. Soient (E, δ) et (E', δ') deux espaces métriques et une application $\psi : (E, \delta) \to (E', \delta')$ une application continue surjective. Montrer que l’image par ψ d’une partie dense de E est dense dans E'.

2. Dans \mathbb{R} muni de la distance usuelle, montrer que l’adhérence de l’ensemble $\{\sin(r) \mid r \in \mathbb{Q}\}$ est l’intervalle $[-1, 1]$.

3. Soit $\varphi_0 : \mathbb{N} \to \mathbb{Q}$ une application bijective. On considère l’application

$$\varphi : \mathbb{N} \longrightarrow \mathbb{R}
\quad n \mapsto \sin(\varphi_0(n)).$$

Notons $C([-1, 1], \mathbb{R})$ l’ensemble des applications continues de $[-1, 1]$ dans \mathbb{R}. Étant donnés deux éléments f, g de $C([-1, 1], \mathbb{R})$, on note $A_{f,g}$ l’ensemble $\{n \in \mathbb{N} \mid f(\varphi(n)) \neq g(\varphi(n))\}$ et on pose

$$d(f, g) = \begin{cases} 0 & \text{si } A_{f,g} = \emptyset \\ 2^{-\min A_{f,g}} & \text{sinon.} \end{cases}$$

Montrer que d est une distance sur $C([-1, 1], \mathbb{R})$.