Laver tables
Laver tables

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen
Finite objects with a simple description,
Laver tables

Patrick Dehornoy

Laboratoire de Mathématiques Nicolas Oresme
Université de Caen

- Finite objects with a simple description, discovered through set theory,
• Finite objects with a simple description, discovered through set theory, with combinatorial properties that (so far) are only established using unprovable large cardinal hypotheses,
Finite objects with a simple description, discovered through set theory, with combinatorial properties that (so far) are only established using unprovable large cardinal hypotheses, and with (potential) applications in low-dimensional topology.
Plan:
Plan:

• 1. Combinatorial description of Laver tables
Plan:

- 1. Combinatorial description of Laver tables
- 2. Laver tables and set theory
Plan:

• 1. Combinatorial description of Laver tables
• 2. Laver tables and set theory
• 3. Laver tables and low-dimensional topology
Plan:

- 1. Combinatorial description of Laver tables
- 2. Laver tables and set theory
- 3. Laver tables and low-dimensional topology
The selfdistributivity law
The selfdistributivity law

- The (left) selfdistributivity law:

\[x \ast (y \ast z) = (x \ast y) \ast (x \ast z). \]

(LD)
The (left) selfdistributivity law:

\[x \star (y \star z) = (x \star y) \star (x \star z). \] \hspace{1cm} (LD)

cf. associativity: \[x \star (y \star z) = (x \star y) \star z. \]
• **The (left) selfdistributivity law:**

\[x \ast (y \ast z) = (x \ast y) \ast (x \ast z). \]

(cf. associativity: \(x \ast (y \ast z) = (x \ast y) \ast z \).)

• Classical examples:
• The (left) selfdistributivity law:

\[x \ast (y \ast z) = (x \ast y) \ast (x \ast z). \] \hfill (LD)

cf. associativity: \(x \ast (y \ast z) = (x \ast y) \ast z. \)

• Classical examples:
 - \(S \) arbitrary and \(x \ast y := y \), or more generally \(x \ast y = f(y) \);
• The (left) selfdistributivity law:

\[x \ast (y \ast z) = (x \ast y) \ast (x \ast z). \] \hspace{1cm} (LD)

cf. associativity: \(x \ast (y \ast z) = (x \ast y) \ast z. \)

• Classical examples:

- \(S \) arbitrary and \(x \ast y := y \), or more generally \(x \ast y = f(y) \);
- \(E \) module and \(x \ast y := (1 - \lambda)x + \lambda y \);
• The (left) selfdistributivity law:

\[x \ast (y \ast z) = (x \ast y) \ast (x \ast z). \]

(cf. associativity: \(x \ast (y \ast z) = (x \ast y) \ast z \).)

• Classical examples:
 - \(S \) arbitrary and \(x \ast y := y \), or more generally \(x \ast y = f(y) \);
 - \(E \) module and \(x \ast y := (1 - \lambda)x + \lambda y \);
 - \(G \) group and \(x \ast y := xyx^{-1} \).
• The (left) selfdistributivity law:

\[x \ast (y \ast z) = (x \ast y) \ast (x \ast z). \]

(\text{LD})

cf. associativity: \(x \ast (y \ast z) = (x \ast y) \ast z. \)

• Classical examples:
- \(S \) arbitrary and \(x \ast y := y \), or more generally \(x \ast y = f(y) \);
- \(E \) module and \(x \ast y := (1 - \lambda)x + \lambda y \);
- \(G \) group and \(x \ast y := xyx^{-1} \).

• Remark: These operations obey \(x \ast x = x \) ("idempotency")
The selfdistributivity law

• The (left) selfdistributivity law:

\[x \ast (y \ast z) = (x \ast y) \ast (x \ast z). \] (LD)

cf. associativity: \(x \ast (y \ast z) = (x \ast y) \ast z. \)

• Classical examples:
 - \(S \) arbitrary and \(x \ast y := y \), or more generally \(x \ast y = f(y) \);
 - \(E \) module and \(x \ast y := (1 - \lambda)x + \lambda y \);
 - \(G \) group and \(x \ast y := xyx^{-1} \).

• Remark: These operations obey \(x \ast x = x \) ("idempotency")

\[\implies \text{monogenerated substructures are trivial}. \]
• The (left) selfdistributivity law:

\[x \ast (y \ast z) = (x \ast y) \ast (x \ast z). \]

(cf. associativity: \(x \ast (y \ast z) = (x \ast y) \ast z \)).

• Classical examples:
 - \(S \) arbitrary and \(x \ast y := y \), or more generally \(x \ast y = f(y) \);
 - \(E \) module and \(x \ast y := (1 - \lambda)x + \lambda y \);
 - \(G \) group and \(x \ast y := xyx^{-1} \).

• Remark: These operations obey \(x \ast x = x \) ("idempotency")
 \(\rightsquigarrow \) monogenerated substructures are trivial.

• Q: Is conjugacy of a free group characterized by selfdistributivity and idempotency?
The selfdistributivity law

- The (left) selfdistributivity law:
 \[x \ast (y \ast z) = (x \ast y) \ast (x \ast z). \] (LD)

 cf. associativity: \(x \ast (y \ast z) = (x \ast y) \ast z \).

- Classical examples:
 - \(S \) arbitrary and \(x \ast y := y \), or more generally \(x \ast y = f(y) \);
 - \(E \) module and \(x \ast y := (1 - \lambda)x + \lambda y \);
 - \(G \) group and \(x \ast y := xyx^{-1} \).

- Remark: These operations obey \(x \ast x = x \) ("idempotency")
 \(\iff \) monogenerated substructures are trivial.

- Q: Is conjugacy of a free group characterized by selfdistributivity and idempotency?
 No (Drápal-Kepka-Musilek 1994, Larue 1999), it obeys
 \[((x \ast y) \ast y) \ast (x \ast z) = (x \ast y) \ast ((y \ast x) \ast z), \ldots \]
A Laver table
A Laver table

- A binary operation on \{1, 2, 3, 4\}:
• A binary operation on \{1, 2, 3, 4\}: the four element Laver table
A binary operation on \(\{1, 2, 3, 4\} \): the four element Laver table

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• A binary operation on \(\{1, 2, 3, 4\}\): the four element Laver table

\[
\begin{array}{c|cccc}
 * & 1 & 2 & 3 & 4 \\
 \hline
 1 & 1 & 2 & 3 & 4 \\
 2 & & & & \\
 3 & & & & \\
 4 & & & & \\
\end{array}
\]

• Start with \(1 \mod 4\) in the first column,
• A binary operation on \{1, 2, 3, 4\}: the four element Laver table

\[
\begin{array}{c|cccc}
* & 1 & 2 & 3 & 4 \\
\hline
1 & 2 \\
2 & \\
3 & \\
4 & \\
\end{array}
\]

• Start with \(\text{+1 mod 4}\) in the first column,
• A binary operation on \(\{1, 2, 3, 4\} \): the four element Laver table

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Start with \(+1 \mod 4 \) in the first column,
A binary operation on \{1, 2, 3, 4\}: the four element Laver table

\[
\begin{array}{|c|cccc|}
\hline
\ast & 1 & 2 & 3 & 4 \\
\hline
1 & 2 \\
2 & 3 \\
3 & 4 \\
4 \\
\hline
\end{array}
\]

Start with +1 mod 4 in the first column,
- A binary operation on \(\{1, 2, 3, 4\} \): the four element Laver table

<table>
<thead>
<tr>
<th>*</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Start with \(+1 \mod 4 \) in the first column,
• A binary operation on \{1, 2, 3, 4\}: the four element Laver table

\[
\begin{array}{c|cccc}
* & 1 & 2 & 3 & 4 \\
\hline
1 & 2 & & & \\
2 & 3 & & & \\
3 & 4 & & & \\
4 & 1 & & & \\
\end{array}
\]

• Start with \(1 \mod 4\) in the first column,
 and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1)\):
A binary operation on \(\{1, 2, 3, 4\} \): the four element Laver table

\[
\begin{array}{c|cccc}
\ast & 1 & 2 & 3 & 4 \\
\hline
1 & 2 & & & \\
2 & & 3 & & \\
3 & & & 4 & \\
4 & & & & 1 \\
\end{array}
\]

Start with \(+1 \mod 4 \) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1) \):

\(4 \ast 2 = \)
A binary operation on \{1, 2, 3, 4\}: the four element Laver table

\[
\begin{array}{c|cccc}
* & 1 & 2 & 3 & 4 \\
\hline
1 & 2 & & & \\
2 & 3 & & & \\
3 & 4 & & & \\
4 & 1 & & & \\
\end{array}
\]

- Start with \(+1 \mod 4 \) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1) \): \(4 \ast 2 = 4 \ast (1 \ast 1) \)
A binary operation on \(\{1, 2, 3, 4\} \): the four element \textbf{Laver table}

\[
\begin{array}{c|cccc}
\ast & 1 & 2 & 3 & 4 \\
\hline
1 & 2 & & & \\
2 & & 3 & & \\
3 & & & 4 & \\
4 & & & & 1 \\
\end{array}
\]

Start with \(+1 \mod 4 \) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1) \):

\[
4 \ast 2 = 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1)
\]
A binary operation on \(\{1, 2, 3, 4\} \): the four element Laver table

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start with \(+1 \mod 4\) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1)\):

\[
4 \ast 2 = 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1
\]
A binary operation on \{1, 2, 3, 4\}: the four element Laver table

\[
\begin{array}{c|cccc}
\ast & 1 & 2 & 3 & 4 \\
\hline
1 & 2 \\
2 & 3 \\
3 & 4 \\
4 & 1 \\
\end{array}
\]

Start with \(+1 \mod 4\) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1)\):

\[
4 \ast 2 = 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2, \]
A Laver table

- A binary operation on \(\{1, 2, 3, 4\} \): the four element Laver table

<table>
<thead>
<tr>
<th>*</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Start with \(+1 \mod 4\) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1) \):

\[
4 \ast 2 = 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2,
\]
A binary operation on \(\{1, 2, 3, 4\} \): the four element Laver table

\[
\begin{array}{c|cccc}
* & 1 & 2 & 3 & 4 \\
\hline
1 & 2 \\
2 & 3 \\
3 & 4 \\
4 & 1 & 2 \\
\end{array}
\]

Start with \(+1 \mod 4 \) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1) \):

\[
4 \ast 2 = 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2,
\]

\[
4 \ast 3
\]
A Laver table

• A binary operation on \(\{1, 2, 3, 4\}\): the four element Laver table

\[
\begin{array}{c|cccc}
* & 1 & 2 & 3 & 4 \\
\hline
1 & 2 \\
2 & 3 \\
3 & 4 \\
4 & 1 & 2 \\
\end{array}
\]

• Start with \(+1 \mod 4\) in the first column, and complete so as to obey the rule \(x * (y * 1) = (x * y) * (x * 1)\):

\[
4 * 2 = 4 * (1 * 1) = (4 * 1) * (4 * 1) = 1 * 1 = 2, \\
4 * 3 = 4 * (2 * 1)
\]
A binary operation on \{1, 2, 3, 4\}: the four element Laver table

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Start with \(+1 \mod 4\) in the first column, and complete so as to obey the rule \(x \star (y \star 1) = (x \star y) \star (x \star 1)\):

\[
\begin{align*}
4 \star 2 &= 4 \star (1 \star 1) = (4 \star 1) \star (4 \star 1) = 1 \star 1 = 2, \\
4 \star 3 &= 4 \star (2 \star 1) = (4 \star 2) \star (4 \star 1)
\end{align*}
\]
A binary operation on \{1, 2, 3, 4\}: the four element Laver table

\[
\begin{array}{c|cccc}
 \ast & 1 & 2 & 3 & 4 \\
 \hline
 1 & 2 & & & \\
 2 & & 3 & & \\
 3 & & & 4 & \\
 4 & 1 & 2 & & \\
\end{array}
\]

Start with +1\ mod\ 4 in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1) \):

\[
4 \ast 2 = 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2,
\]

\[
4 \ast 3 = 4 \ast (2 \ast 1) = (4 \ast 2) \ast (4 \ast 1) = 2 \ast 1
\]
A binary operation on \(\{1, 2, 3, 4\}\): the four element Laver table

\[
\begin{array}{c|cccc}
* & 1 & 2 & 3 & 4 \\
\hline
1 & 2 \\
2 & 3 \\
3 & 4 \\
4 & 1 & 2 \\
\end{array}
\]

Start with \(+1 \mod 4\) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1)\):

\[
\begin{align*}
4 \ast 2 &= 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2, \\
4 \ast 3 &= 4 \ast (2 \ast 1) = (4 \ast 2) \ast (4 \ast 1) = 2 \ast 1 = 3,
\end{align*}
\]
- A binary operation on \{1, 2, 3, 4\}: the four element Laver table

\[
\begin{array}{c|cccc}
* & 1 & 2 & 3 & 4 \\
\hline
1 & 2 \\
2 & 3 \\
3 & 4 \\
4 & 1 & 2 & 3 \\
\end{array}
\]

- Start with \(+1 \mod 4 \) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1) \):

\[
\begin{align*}
4 \ast 2 &= 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2, \\
4 \ast 3 &= 4 \ast (2 \ast 1) = (4 \ast 2) \ast (4 \ast 1) = 2 \ast 1 = 3,
\end{align*}
\]
A Laver table

- A binary operation on \(\{1, 2, 3, 4\} \): the four element Laver table

\[
\begin{array}{c|cccc}
* & 1 & 2 & 3 & 4 \\
\hline
1 & 2 \\
2 & 3 \\
3 & 4 \\
4 & 1 & 2 & 3 \\
\end{array}
\]

- Start with \(+1 \mod 4 \) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1) \):

\[
\begin{align*}
4 \ast 2 &= 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2, \\
4 \ast 3 &= 4 \ast (2 \ast 1) = (4 \ast 2) \ast (4 \ast 1) = 2 \ast 1 = 3, \\
4 \ast 4 &
\end{align*}
\]
A Laver table

- A binary operation on \{1, 2, 3, 4\}: the four element Laver table

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

- Start with \(+1 \mod 4\) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1)\):

\[
\begin{align*}
4 \ast 2 &= 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2, \\
4 \ast 3 &= 4 \ast (2 \ast 1) = (4 \ast 2) \ast (4 \ast 1) = 2 \ast 1 = 3, \\
4 \ast 4 &= 4 \ast (3 \ast 1)
\end{align*}
\]
• A binary operation on \{1, 2, 3, 4\}: the four element Laver table

<table>
<thead>
<tr>
<th>*</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

• Start with \(+1 \mod 4\) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1)\):

\[
\begin{align*}
4 \ast 2 &= 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2, \\
4 \ast 3 &= 4 \ast (2 \ast 1) = (4 \ast 2) \ast (4 \ast 1) = 2 \ast 1 = 3, \\
4 \ast 4 &= 4 \ast (3 \ast 1) = (4 \ast 3) \ast (4 \ast 1)
\end{align*}
\]
A Laver table

- A binary operation on \{1, 2, 3, 4\}: the four element Laver table

\[
\begin{array}{c|cccc}
* & 1 & 2 & 3 & 4 \\
\hline
1 & 2 \\
2 & 3 \\
3 & 4 \\
4 & 1 & 2 & 3 \\
\end{array}
\]

- Start with \(+ 1 \text{ mod } 4\) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1)\):

\[
\begin{align*}
4 \ast 2 &= 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2, \\
4 \ast 3 &= 4 \ast (2 \ast 1) = (4 \ast 2) \ast (4 \ast 1) = 2 \ast 1 = 3, \\
4 \ast 4 &= 4 \ast (3 \ast 1) = (4 \ast 3) \ast (4 \ast 1) = 3 \ast 1 = 4,
\end{align*}
\]
A Laver table

- A binary operation on \(\{1, 2, 3, 4\} \): the four element Laver table

\[
\begin{array}{c|cccc}
\ast & 1 & 2 & 3 & 4 \\
\hline
1 & 2 \\
2 & 3 \\
3 & 4 \\
4 & 1 & 2 & 3 & 4 \\
\end{array}
\]

- Start with \(+1 \mod 4\) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1)\):

\[
\begin{align*}
4 \ast 2 &= 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2, \\
4 \ast 3 &= 4 \ast (2 \ast 1) = (4 \ast 2) \ast (4 \ast 1) = 2 \ast 1 = 3, \\
4 \ast 4 &= 4 \ast (3 \ast 1) = (4 \ast 3) \ast (4 \ast 1) = 3 \ast 1 = 4,
\end{align*}
\]
A binary operation on \(\{1, 2, 3, 4\} \): the four element Laver table

<table>
<thead>
<tr>
<th>*</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Start with \(+1 \text{ mod } 4\) in the first column, and complete so as to obey the rule \(x \cdot (y \cdot 1) = (x \cdot y) \cdot (x \cdot 1)\):

\[
\begin{align*}
4 \cdot 2 &= 4 \cdot (1 \cdot 1) = (4 \cdot 1) \cdot (4 \cdot 1) = 1 \cdot 1 = 2, \\
4 \cdot 3 &= 4 \cdot (2 \cdot 1) = (4 \cdot 2) \cdot (4 \cdot 1) = 2 \cdot 1 = 3, \\
4 \cdot 4 &= 4 \cdot (3 \cdot 1) = (4 \cdot 3) \cdot (4 \cdot 1) = 3 \cdot 1 = 4, \\
3 \cdot 2 &= 3 \cdot (1 \cdot 1) = (3 \cdot 1) \cdot (3 \cdot 1) = 4 \cdot 4 = 4, \ldots
\end{align*}
\]
- A binary operation on \(\{1, 2, 3, 4\}\): the four element Laver table

\[
\begin{array}{c|cccc}
* & 1 & 2 & 3 & 4 \\
\hline
1 & 2 \\
2 & 3 \\
3 & 4 & 4 \\
4 & 1 & 2 & 3 & 4 \\
\end{array}
\]

- Start with \(+1\text{ mod }4\) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1)\):

\[
\begin{align*}
4 \ast 2 &= 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2, \\
4 \ast 3 &= 4 \ast (2 \ast 1) = (4 \ast 2) \ast (4 \ast 1) = 2 \ast 1 = 3, \\
4 \ast 4 &= 4 \ast (3 \ast 1) = (4 \ast 3) \ast (4 \ast 1) = 3 \ast 1 = 4, \\
3 \ast 2 &= 3 \ast (1 \ast 1) = (3 \ast 1) \ast (3 \ast 1) = 4 \ast 4 = 4, \ldots
\end{align*}
\]
A binary operation on \(\{1, 2, 3, 4\}\): the four element Laver table

\[
\begin{array}{c|cccc}
* & 1 & 2 & 3 & 4 \\
\hline
1 & 2 \\
2 & 3 \\
3 & 4 & 4 & 4 \\
4 & 1 & 2 & 3 & 4
\end{array}
\]

- Start with \(+1\mod 4\) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1)\):

\[
\begin{align*}
4 \ast 2 &= 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2, \\
4 \ast 3 &= 4 \ast (2 \ast 1) = (4 \ast 2) \ast (4 \ast 1) = 2 \ast 1 = 3, \\
4 \ast 4 &= 4 \ast (3 \ast 1) = (4 \ast 3) \ast (4 \ast 1) = 3 \ast 1 = 4, \\
3 \ast 2 &= 3 \ast (1 \ast 1) = (3 \ast 1) \ast (3 \ast 1) = 4 \ast 4 = 4,
\end{align*}
\]
• A binary operation on \{1, 2, 3, 4\}: the four element Laver table

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

• Start with \(+1 \mod 4\) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1)\):

\[
\begin{align*}
4 \ast 2 &= 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2, \\
4 \ast 3 &= 4 \ast (2 \ast 1) = (4 \ast 2) \ast (4 \ast 1) = 2 \ast 1 = 3, \\
4 \ast 4 &= 4 \ast (3 \ast 1) = (4 \ast 3) \ast (4 \ast 1) = 3 \ast 1 = 4, \\
3 \ast 2 &= 3 \ast (1 \ast 1) = (3 \ast 1) \ast (3 \ast 1) = 4 \ast 4 = 4, \ldots
\end{align*}
\]
• A binary operation on \(\{1, 2, 3, 4\} \): the four element \textbf{Laver table}

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

• Start with \(+1\ mod \ 4\) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1)\):

\[
\begin{align*}
4 \ast 2 &= 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2, \\
4 \ast 3 &= 4 \ast (2 \ast 1) = (4 \ast 2) \ast (4 \ast 1) = 2 \ast 1 = 3, \\
4 \ast 4 &= 4 \ast (3 \ast 1) = (4 \ast 3) \ast (4 \ast 1) = 3 \ast 1 = 4, \\
3 \ast 2 &= 3 \ast (1 \ast 1) = (3 \ast 1) \ast (3 \ast 1) = 4 \ast 4 = 4, ...
\end{align*}
\]
• A binary operation on \{1, 2, 3, 4\}: the four element Laver table

\[
\begin{array}{c|cccc}
\ast & 1 & 2 & 3 & 4 \\
\hline
1 & 2 & 4 & 2 & 4 \\
2 & 3 & 4 & 3 & 4 \\
3 & 4 & 4 & 4 & 4 \\
4 & 1 & 2 & 3 & 4 \\
\end{array}
\]

• Start with \(+1 \mod 4\) in the first column, and complete so as to obey the rule \(x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1)\):

\[
\begin{align*}
4 \ast 2 &= 4 \ast (1 \ast 1) = (4 \ast 1) \ast (4 \ast 1) = 1 \ast 1 = 2, \\
4 \ast 3 &= 4 \ast (2 \ast 1) = (4 \ast 2) \ast (4 \ast 1) = 2 \ast 1 = 3, \\
4 \ast 4 &= 4 \ast (3 \ast 1) = (4 \ast 3) \ast (4 \ast 1) = 3 \ast 1 = 4, \\
3 \ast 2 &= 3 \ast (1 \ast 1) = (3 \ast 1) \ast (3 \ast 1) = 4 \ast 4 = 4, & \ldots
\end{align*}
\]
• The same construction works for every size
The same construction works for every size and it provides a selfdistributive structure for powers of 2:
The same construction works for every size and it provides a selfdistributive structure for powers of 2:

Proposition (Laver).— (i) For every N, there exists a unique binary operation $*$ on \{1, ..., N\} satisfying

\[
x * 1 = x + 1 \mod N \quad \text{and} \quad x * (y * 1) = (x * y) * (x * 1).
\]
- The same construction works for every size and it provides a selfdistributive structure for powers of 2:

- **Proposition** (Laver).— (i) For every N, there exists a unique binary operation \ast on $\{1, \ldots, N\}$ satisfying

 $x \ast 1 = x + 1 \mod N$ and
 $x \ast (y \ast 1) = (x \ast y) \ast (x \ast 1)$.

(ii) The operation thus obtained obeys the law

 $x \ast (y \ast z) = (x \ast y) \ast (x \ast z)$ \hspace{1cm} (LD)

if and only if N is a power of 2.
• The same construction works for every size
 and it provides a selfdistributive structure for powers of 2:

• Proposition (Laver).— (i) For every N, there exists a unique binary operation $*$ on
 $\{1, \ldots, N\}$ satisfying
 \[
 x * 1 = x + 1 \mod N \quad \text{and} \quad x * (y * 1) = (x * y) * (x * 1).
 \]
 (ii) The operation thus obtained obeys the law
 \[
 x * (y * z) = (x * y) * (x * z) \quad \text{(LD)}
 \]
 if and only if N is a power of 2.

\implies the Laver table with 1, 2, 4, 8, 16, 32, ... elements.
Laver tables: examples
<table>
<thead>
<tr>
<th>A_0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_0</td>
<td>1</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>A_0</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1 2</td>
</tr>
<tr>
<td>3</td>
<td>2 2</td>
</tr>
<tr>
<td>4</td>
<td>1 2</td>
</tr>
<tr>
<td>(A_0)</td>
<td>1</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1 2 2</td>
</tr>
<tr>
<td>3</td>
<td>4 4 4 4</td>
</tr>
<tr>
<td>4</td>
<td>4 4 4 4</td>
</tr>
<tr>
<td>(A_0)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1 2 2</td>
</tr>
<tr>
<td>3</td>
<td>4 4 4 4</td>
</tr>
<tr>
<td>4</td>
<td>4 4 4 4</td>
</tr>
</tbody>
</table>
Laver tables: examples

<table>
<thead>
<tr>
<th>A_0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_2</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_3</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_4</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>2</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>2</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>2</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>3</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>3</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>3</td>
<td>12</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>16</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>16</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>16</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>16</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>16</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>16</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>11</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>11</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>11</td>
<td>12</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>
• For $n \geq 1$, one has $1 \ast 1 = 2 \neq 1$ in A_n: not idempotent.
• For $n \geq 1$, one has $1 \ast 1 = 2 \neq 1$ in A_n: not idempotent.
  ~~~ quite différent from group conjugacy and other classical LD-structures
• For $n \geq 1$, one has $1 * 1 = 2 \neq 1$ in $A_n$: not idempotent.

\[ \Rightarrow \text{ quite différent from group conjugacy and other classical LD-structures} \]

• **Proposition (Laver).**— The LD-structure $A_n$ is generated by $1$ and admits the presentation $\langle 1 \mid 1_{[2^n]} = 1 \rangle$, with $x_{[k]} = (\ldots((x \ast x) \ast x)\ldots \ast x$, $k$ terms.
• For $n \geqslant 1$, one has $1 \ast 1 = 2 \neq 1$ in $A_n$: not idempotent.
   \[ \Rightarrow \text{quite différent from group conjugacy and other classical LD-structures} \]

• Proposition (Laver).— The LD-structure $A_n$ is generated by $1$ and admits the presentation $\langle 1 \mid 1[2^n] = 1 \rangle$, with $x[k] = (((x \ast x) \ast x) \ast \cdots) \ast x$, $k$ terms.

• Proposition (Drápal).— There exists an (explicit) list of constructions $\mathcal{L}$ (direct product, ...) such that every finite monogenerated LD-structure can be obtained from Laver tables using constructions from $\mathcal{L}$. 
- For $n \geq 1$, one has $1 \ast 1 = 2 \neq 1$ in $A_n$: not idempotent.
  ~⇒ quite différent from group conjugacy and other classical LD-structures

- **Proposition (Laver).**— The LD-structure $A_n$ is generated by $1$ and admits the presentation $\langle 1 \mid 1_{[2^n]} = 1 \rangle$, with $x_{[k]} = (\ldots((x \ast x) \ast x)\ldots) \ast x$, $k$ terms.

- **Proposition (Drápal).**— There exists an (explicit) list of constructions $\mathcal{L}$ (direct product, ...) such that every finite monogenerated LD-structure can be obtained from Laver tables using constructions from $\mathcal{L}$.
  ~⇒ think of $\mathbb{Z}/p\mathbb{Z}$ in the associative world
• **Proposition (Laver).**— For every $p \leq 2^n$, there exists a number $\pi_n(p)$, a power of 2,
• Proposition (Laver).— For every \( p \leq 2^n \), there exists a number \( \pi_n(p) \), a power of 2, such that the \( p \)th row in (the table of) \( A_n \)
• Proposition (Laver).— For every $p \leq 2^n$, there exists a number $\pi_n(p)$, a power of 2, such that the $p$th row in (the table of) $A_n$ is
the repetition of $\pi_n(p)$ values increasing from $p+1 \mod 2^n$ to $2^n$. 
• **Proposition (Laver).**— For every \( p \leq 2^n \), there exists a number \( \pi_n(p) \), a power of 2, such that the \( p \)th row in (the table of) \( A_n \) is the repetition of \( \pi_n(p) \) values increasing from \( p+1 \mod 2^n \) to \( 2^n \).

• **Example:**

\[
\begin{array}{cccccccc}
A_3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 4 & 6 & 8 & 2 & 4 & 6 & 8 \\
2 & 3 & 4 & 7 & 8 & 3 & 4 & 7 & 8 \\
3 & 4 & 8 & 4 & 8 & 4 & 8 & 4 & 8 \\
4 & 5 & 6 & 7 & 8 & 5 & 6 & 7 & 8 \\
5 & 6 & 8 & 6 & 8 & 6 & 8 & 6 & 8 \\
6 & 7 & 8 & 7 & 8 & 7 & 8 & 7 & 8 \\
7 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]
• Proposition (Laver).— For every $p \leq 2^n$, there exists a number $\pi_n(p)$, a power of 2, such that the $p$th row in (the table of) $A_n$ is the repetition of $\pi_n(p)$ values increasing from $p + 1 \mod 2^n$ to $2^n$.

• Example:

<table>
<thead>
<tr>
<th>$A_3$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

$\Rightarrow \pi_3(8) = 8$
• Proposition (Laver).— For every $p \leq 2^n$, there exists a number $\pi_n(p)$, a power of 2, such that the $p$th row in (the table of) $A_n$ is the repetition of $\pi_n(p)$ values increasing from $p + 1 \mod 2^n$ to $2^n$. 

<table>
<thead>
<tr>
<th>$A_3$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

• Example:

$\Rightarrow \pi_3(7) = 1$

$\Rightarrow \pi_3(8) = 8$
• Proposition (Laver).— For every $p \leq 2^n$, there exists a number $\pi_n(p)$, a power of 2, such that the $p$th row in (the table of) $A_n$ is
the repetition of $\pi_n(p)$ values increasing from $p+1 \mod 2^n$ to $2^n$.

<table>
<thead>
<tr>
<th>$A_3$</th>
<th>1 2 3 4 5 6 7 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 4 6 8 2 4 6 8</td>
</tr>
<tr>
<td>2</td>
<td>3 4 7 8 3 4 7 8</td>
</tr>
<tr>
<td>3</td>
<td>4 8 4 8 4 8 4 8</td>
</tr>
<tr>
<td>4</td>
<td>5 6 7 8 5 6 7 8</td>
</tr>
<tr>
<td>5</td>
<td>6 8 6 8 6 8 6 8</td>
</tr>
<tr>
<td>6</td>
<td>7 8 7 8 7 8 7 8</td>
</tr>
<tr>
<td>7</td>
<td>8 8 8 8 8 8 8 8</td>
</tr>
<tr>
<td>8</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
</tbody>
</table>

• Example:

$\Rightarrow \pi_3(6) = 2$
$\Rightarrow \pi_3(7) = 1$
$\Rightarrow \pi_3(8) = 8$
• Proposition (Laver).— For every $p \leq 2^n$, there exists a number $\pi_n(p)$, a power of 2, such that the $p$th row in (the table of) $A_n$ is the repetition of $\pi_n(p)$ values increasing from $p + 1 \mod 2^n$ to $2^n$.

**Example:**

<table>
<thead>
<tr>
<th>$A_3$</th>
<th>1 2 3 4 5 6 7 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 4 6 8 2 4 6 8</td>
</tr>
<tr>
<td>2</td>
<td>3 4 7 8 3 4 7 8</td>
</tr>
<tr>
<td>3</td>
<td>4 8 4 8 4 8 4 8</td>
</tr>
<tr>
<td>4</td>
<td>5 6 7 8 5 6 7 8</td>
</tr>
<tr>
<td>5</td>
<td>6 8 6 8 6 8 6 8</td>
</tr>
<tr>
<td>6</td>
<td>7 8 7 8 7 8 7 8</td>
</tr>
<tr>
<td>7</td>
<td>8 8 8 8 8 8 8 8</td>
</tr>
<tr>
<td>8</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
</tbody>
</table>

$\Rightarrow \pi_3(5) = 2$  
$\Rightarrow \pi_3(6) = 2$  
$\Rightarrow \pi_3(7) = 1$  
$\Rightarrow \pi_3(8) = 8$
• Proposition (Laver).— For every $p \leq 2^n$, there exists a number $\pi_n(p)$, a power of 2, such that the $p$th row in (the table of) $A_n$ is the repetition of $\pi_n(p)$ values increasing from $p + 1 \mod 2^n$ to $2^n$.

<table>
<thead>
<tr>
<th>$A_3$</th>
<th>1 2 3 4 5 6 7 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 4 6 8 2 4 6 8</td>
</tr>
<tr>
<td>2</td>
<td>3 4 7 8 3 4 7 8</td>
</tr>
<tr>
<td>3</td>
<td>4 8 4 8 4 8 4 8</td>
</tr>
<tr>
<td>4</td>
<td>5 6 7 8 5 6 7 8</td>
</tr>
<tr>
<td>5</td>
<td>6 8 6 8 6 8 6 8</td>
</tr>
<tr>
<td>6</td>
<td>7 8 7 8 7 8 7 8</td>
</tr>
<tr>
<td>7</td>
<td>8 8 8 8 8 8 8 8</td>
</tr>
<tr>
<td>8</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
</tbody>
</table>

• Example:

$$\pi_3(4) = 4$$
$$\pi_3(5) = 2$$
$$\pi_3(6) = 2$$
$$\pi_3(7) = 1$$
$$\pi_3(8) = 8$$
- **Proposition (Laver).**— For every $p \leq 2^n$, there exists a number $\pi_n(p)$, a power of 2, such that the $p$th row in (the table of) $A_n$ is the repetition of $\pi_n(p)$ values increasing from $p + 1 \mod 2^n$ to $2^n$.

- **Example:**

<table>
<thead>
<tr>
<th>$A_3$</th>
<th>1 2 3 4 5 6 7 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 4 6 8 2 4 6 8</td>
</tr>
<tr>
<td>2</td>
<td>3 4 7 8 3 4 7 8</td>
</tr>
<tr>
<td>3</td>
<td>4 8 4 8 4 8 4 8</td>
</tr>
<tr>
<td>4</td>
<td>5 6 7 8 5 6 7 8</td>
</tr>
<tr>
<td>5</td>
<td>6 8 6 8 6 8 6 8</td>
</tr>
<tr>
<td>6</td>
<td>7 8 7 8 7 8 7 8</td>
</tr>
<tr>
<td>7</td>
<td>8 8 8 8 8 8 8 8</td>
</tr>
<tr>
<td>8</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
</tbody>
</table>

$\Rightarrow \pi_3(3) = 2$

$\Rightarrow \pi_3(4) = 4$

$\Rightarrow \pi_3(5) = 2$

$\Rightarrow \pi_3(6) = 2$

$\Rightarrow \pi_3(7) = 1$

$\Rightarrow \pi_3(8) = 8$
• Proposition (Laver).— For every $p \leq 2^n$, there exists a number $\pi_n(p)$, a power of 2, such that the $p$th row in (the table of) $A_n$ is the repetition of $\pi_n(p)$ values increasing from $p+1 \mod 2^n$ to $2^n$.

• Example:

<table>
<thead>
<tr>
<th>$A_3$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

$\leadsto \pi_3(2) = 4$  
$\leadsto \pi_3(3) = 2$  
$\leadsto \pi_3(4) = 4$  
$\leadsto \pi_3(5) = 2$  
$\leadsto \pi_3(6) = 2$  
$\leadsto \pi_3(7) = 1$  
$\leadsto \pi_3(8) = 8$
• Proposition (Laver).— For every $p \leq 2^n$, there exists a number $\pi_n(p)$, a power of 2, such that the $p$th row in (the table of) $A_n$ is the repetition of $\pi_n(p)$ values increasing from $p + 1 \mod 2^n$ to $2^n$.

• Example:

\[
\begin{array}{|c|cccccccc|}
\hline
\text{A}_3 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
1 & 2 & 4 & 6 & 8 & 2 & 4 & 6 & 8 \\
2 & 3 & 4 & 7 & 8 & 3 & 4 & 7 & 8 \\
3 & 4 & 8 & 4 & 8 & 4 & 8 & 4 & 8 \\
4 & 5 & 6 & 7 & 8 & 5 & 6 & 7 & 8 \\
5 & 6 & 8 & 6 & 8 & 6 & 8 & 6 & 8 \\
6 & 7 & 8 & 7 & 8 & 7 & 8 & 7 & 8 \\
7 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\end{array}
\]

$\Rightarrow \pi_3(1) = 4$

$\Rightarrow \pi_3(2) = 4$

$\Rightarrow \pi_3(3) = 2$

$\Rightarrow \pi_3(4) = 4$

$\Rightarrow \pi_3(5) = 2$

$\Rightarrow \pi_3(6) = 2$

$\Rightarrow \pi_3(7) = 1$

$\Rightarrow \pi_3(8) = 8$
• The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$. 
The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$.

The inverse limit of the $A_n$ is an LD operation on 2-adic numbers;
• The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$.
  
  ~ the inverse limit of the $A_n$ is an LD operation on 2-adic numbers;
  ~ one always has $\pi_n(p) \geq \pi_{n-1}(p)$.
• The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$.
  
  $\leadsto$ the inverse limit of the $A_n$ is an LD operation on 2-adic numbers;
  
  $\leadsto$ one always has $\pi_n(x) \geq \pi_{n-1}(x)$.

• A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>n</th>
<th>$\pi_n(1)$</th>
<th>$\pi_n(2)$</th>
</tr>
</thead>
</table>

Asymptotic behaviour
Asymptotic behaviour

- The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$.
  - the inverse limit of the $A_n$ is an LD operation on 2-adic numbers;
  - one always has $\pi_n(p) \geq \pi_{n-1}(p)$.

- A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(1)$</td>
<td>1</td>
</tr>
<tr>
<td>$\pi_n(2)$</td>
<td>—</td>
</tr>
</tbody>
</table>
Asymptotic behaviour

• The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$.
  \[ \sim \text{ the inverse limit of the $A_n$ is an LD operation on 2-adic numbers;} \]
  \[ \sim \text{ one always has } \pi_n(p) \geq \pi_{n-1}(p). \]

• A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(1)$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\pi_n(2)$</td>
<td>–</td>
<td>2</td>
</tr>
</tbody>
</table>
• The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$.

  $\Rightarrow$ the inverse limit of the $A_n$ is an LD operation on 2-adic numbers;

  $\Rightarrow$ one always has $\pi_n(p) \geqslant \pi_{n-1}(p)$.

• A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(1)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$\pi_n(2)$</td>
<td>$-$</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
• The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$.
  
  ~ the inverse limit of the $A_n$ is an LD operation on 2-adic numbers;
  
  ~ one always has $\pi_n(p) \geq \pi_{n-1}(p)$.

• A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(1)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>$\pi_n(2)$</td>
<td>(-)</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$.

The inverse limit of the $A_n$ is an LD operation on 2-adic numbers;

one always has $\pi_n(p) \geq \pi_{n-1}(p)$.

A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(1)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$\pi_n(2)$</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
• The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$.

  ~~~ the inverse limit of the $A_n$ is an LD operation on 2-adic numbers;

  ~~~ one always has $\pi_n(p) \geq \pi_{n-1}(p)$.

• A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(1)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>$\pi_n(2)$</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
The map \( x \mapsto x \mod 2^{n-1} \) is a surjective homomorphism from \( A_n \) to \( A_{n-1} \).

\( \Rightarrow \) the inverse limit of the \( A_n \) is an LD operation on 2-adic numbers;

\( \Rightarrow \) one always has \( \pi_n(p) \geq \pi_{n-1}(p) \).

A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \pi_n(1) )</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>( \pi_n(2) )</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
• The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$.

  the inverse limit of the $A_n$ is an LD operation on 2-adic numbers;

  one always has $\pi_n(p) \geq \pi_{n-1}(p)$.

• A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(1)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>$\pi_n(2)$</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
• The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$.
  
  $\Rightarrow$ the inverse limit of the $A_n$ is an LD operation on 2-adic numbers;
  
  $\Rightarrow$ one always has $\pi_n(p) \geq \pi_{n-1}(p)$.

• A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(1)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>$\pi_n(2)$</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>
• The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$.
  
  $\Rightarrow$ the inverse limit of the $A_n$ is an LD operation on 2-adic numbers;
  $\Rightarrow$ one always has $\pi_n(p) \geq \pi_{n-1}(p)$.

• A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(1)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>$\pi_n(2)$</td>
<td>−</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>
• The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$.
  
  ~*~ the inverse limit of the $A_n$ is an LD operation on 2-adic numbers;
  
  ~*~ one always has $\pi_n(p) \geq \pi_{n-1}(p)$.

• A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(1)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>$\pi_n(2)$</td>
<td>−</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>
• The map \( x \mapsto x \mod 2^{n-1} \) is a surjective homomorphism from \( A_n \) to \( A_{n-1} \).
  
  ~ the inverse limit of the \( A_n \) is an LD operation on 2-adic numbers;
  
  ~ one always has \( \pi_n(p) \geq \pi_{n-1}(p) \).

• A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>( \cdots )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \pi_n(1) )</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>( \cdots )</td>
</tr>
<tr>
<td>( \pi_n(2) )</td>
<td>--</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>( \cdots )</td>
</tr>
</tbody>
</table>
• The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$.

  the inverse limit of the $A_n$ is an LD operation on 2-adic numbers;

  one always has $\pi_n(p) \geq \pi_{n-1}(p)$.

• A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(1)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>...</td>
</tr>
<tr>
<td>$\pi_n(2)$</td>
<td>—</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>...</td>
</tr>
</tbody>
</table>

• Question 1: Does $\pi_n(2) \geq \pi_n(1)$ always hold?
• The map \( x \mapsto x \mod 2^{n-1} \) is a surjective homomorphism from \( A_n \) to \( A_{n-1} \).
  \( \rightsquigarrow \) the inverse limit of the \( A_n \) is an LD operation on 2-adic numbers;
  \( \rightsquigarrow \) one always has \( \pi_n(p) \geq \pi_{n-1}(p) \).

• A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>( \ldots )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \pi_n(1) )</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>( \ldots )</td>
</tr>
<tr>
<td>( \pi_n(2) )</td>
<td>( - )</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>( \ldots )</td>
</tr>
</tbody>
</table>

• Question 1: Does \( \pi_n(2) \geq \pi_n(1) \) always hold?
• Question 2: Does \( \pi_n(1) \) tend to \( \infty \) with \( n \)?
• The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $A_n$ to $A_{n-1}$.

  the inverse limit of the $A_n$ is an LD operation on 2-adic numbers;

  one always has $\pi_n(p) \geq \pi_{n-1}(p)$.

• A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>$n$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(1)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>...</td>
</tr>
<tr>
<td>$\pi_n(2)$</td>
<td>−</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>...</td>
</tr>
</tbody>
</table>

• Question 1: Does $\pi_n(2) \geq \pi_n(1)$ always hold?

• Question 2: Does $\pi_n(1)$ tend to $\infty$ with $n$? Does it reach 32?
• The map \( x \mapsto x \mod 2^{n-1} \) is a surjective homomorphism from \( A_n \) to \( A_{n-1} \).
  - the inverse limit of the \( A_n \) is an LD operation on 2-adic numbers;
  - one always has \( \pi_n(p) \geq \pi_{n-1}(p) \).

• A few values of the periods of 1 and 2:

<table>
<thead>
<tr>
<th>( n )</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \pi_n(1) )</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>...</td>
</tr>
<tr>
<td>( \pi_n(2) )</td>
<td>–</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>...</td>
</tr>
</tbody>
</table>

• Question 1: Does \( \pi_n(2) \geq \pi_n(1) \) always hold?

• Question 2: Does \( \pi_n(1) \) tend to \( \infty \) with \( n \)? Does it reach 32?

• Theorem (Laver, 1995).—
  the answer to the above questions is positive.
• The map $x \mapsto x \mod 2^{n-1}$ is a surjective homomorphism from $\mathbb{A}_n$ to $\mathbb{A}_{n-1}$.

  - The inverse limit of the $\mathbb{A}_n$ is an LD operation on 2-adic numbers;
  - one always has $\pi_n(p) \geq \pi_{n-1}(p)$.

• A few values of the periods of 1 and 2:

| $n$ | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(1)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>...</td>
</tr>
</tbody>
</table>
| $\pi_n(2)$ | -  | 2  | 2  | 4  | 4  | 8  | 8  | 16 | 16 | 16 | 16 | 16 | ...

• Question 1: Does $\pi_n(2) \geq \pi_n(1)$ always hold?
• Question 2: Does $\pi_n(1)$ tend to $\infty$ with $n$? Does it reach 32?

• Theorem (Laver, 1995).— If there exists a selfsimilar set, then the answer to the above questions is positive.
Plan:

1. Combinatorial description of Laver tables
2. Laver tables and set theory
3. Laver tables and low-dimensional topology
• Set theory is a theory of infinity;
Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system $\text{ZF}$ (1922),
• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system $\text{ZF}$ (1922), which is incomplete:
Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system $\text{ZF}$ (1922), which is incomplete: some statements are neither provable nor refutable from $\text{ZF}$.
• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system \textbf{ZF} (1922), which is \textit{incomplete}: some statements are neither provable nor refutable from \textbf{ZF} (e.g., \textit{continuum hypoth.}).
• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system $\mathbf{ZF}$ (1922), which is incomplete: some statements are neither provable nor refutable from $\mathbf{ZF}$ (e.g., continuum hypoth.)

→ Discover more properties of infinity and complete $\mathbf{ZF}$ with further axioms...
• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system $\mathbf{ZF}$ (1922), which is incomplete: some statements are neither provable nor refutable from $\mathbf{ZF}$ (e.g., continuum hypoth.)

→ Discover more properties of infinity and complete $\mathbf{ZF}$ with further axioms...

• Typically, large cardinals axioms
• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system \( ZF \) (1922), which is incomplete: some statements are neither provable nor refutable from \( ZF \) (e.g., continuum hypoth.)

\[ \text{Discover more properties of infinity and complete } ZF \text{ with further axioms...} \]

• Typically, large cardinals axioms
Large cardinals

• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system $\mathbf{ZF}$ (1922), which is incomplete: some statements are neither provable nor refutable from $\mathbf{ZF}$ (e.g., continuum hypoth.).

  ⇞ Discover more properties of infinity and complete $\mathbf{ZF}$ with further axioms...

• Typically, large cardinals axioms
• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system $\text{ZF}$ (1922), which is incomplete: some statements are neither provable nor refutable from $\text{ZF}$ (e.g., continuum hypoth.).

→ Discover more properties of infinity and complete $\text{ZF}$ with further axioms...

• Typically, large cardinals axioms = various solutions to the equation

\[
\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}.
\]
• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system $\textbf{ZF}$ (1922), which is incomplete: some statements are neither provable nor refutable from $\textbf{ZF}$ (e.g., continuum hypoth.).

   $\rightsquigarrow$ Discover more properties of infinity and complete $\textbf{ZF}$ with further axioms.

• Typically, large cardinals axioms = various solutions to the equation $\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}$.

Examples: inaccessible cardinals,
• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system \( \mathsf{ZF} \) (1922), which is incomplete: some statements are neither provable nor refutable from \( \mathsf{ZF} \) (e.g., continuum hypoth.)(\( \implies \)).

~~ Discover more properties of infinity and complete \( \mathsf{ZF} \) with further axioms.

• Typically, **large cardinals** axioms = **various** solutions to the equation

\[
\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}.
\]

Examples: **inaccessible** cardinals, **measurable** cardinals, etc.
• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system $\textbf{ZF}$ (1922), which is incomplete: some statements are neither provable nor refutable from $\textbf{ZF}$ (e.g., continuum hypoth.).

→ Discover more properties of infinity and complete $\textbf{ZF}$ with further axioms.

• Typically, large cardinals axioms = various solutions to the equation

\[
\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}.
\]

Examples: inaccessible cardinals, measurable cardinals, etc.

• General principle: “being selfsimilar implies being large”.
Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system $\mathsf{ZF}$ (1922), which is incomplete: some statements are neither provable nor refutable from $\mathsf{ZF}$ (e.g., continuum hypoth.).

Discover more properties of infinity and complete $\mathsf{ZF}$ with further axioms...

Typically, large cardinals axioms = various solutions to the equation

$$\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}.$$ Examples: inaccessible cardinals, measurable cardinals, etc.

General principle: “being selfsimilar implies being large”.
- $A$ is infinite iff $\exists j : A \rightarrow A$ injective not bijective;
• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system $\text{ZF}$ (1922), which is incomplete: some statements are neither provable nor refutable from $\text{ZF}$ (e.g., continuum hypothesis).

  \[ \rightsquigarrow \quad \text{Discover more properties of infinity and complete } \text{ZF} \text{ with further axioms...} \]

• Typically, large cardinals axioms = various solutions to the equation

\[
\begin{align*}
\text{ultra-infinite} & = \text{infinite} \times \text{finite}.
\end{align*}
\]

Examples: inaccessible cardinals, measurable cardinals, etc.

• General principle: “being selfsimilar implies being large”.
  - $A$ is infinite iff $\exists j : A \to A$ injective not bijective;
  
  - $A$ is ultra-infinite (“selfsimilar”) iff $\exists j : A \to A$ injective not bijective and preserving every notion that is definable from $\in$. 

\[\square\]
• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system $\mathbf{ZF}$ (1922), which is incomplete: some statements are neither provable nor refutable from $\mathbf{ZF}$ (e.g., continuum hypothesis).

\[ \Rightarrow \] Discover more properties of infinity and complete $\mathbf{ZF}$ with further axioms.

• Typically, large cardinals axioms = various solutions to the equation

\[
\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}.
\]

Examples: inaccessible cardinals, measurable cardinals, etc.

• General principle: “being selfsimilar implies being large”.
  - $A$ is infinite iff $\exists j : A \rightarrow A$ injective not bijective;

\[ \downarrow \]

a (self)embedding of $A$

  - $A$ is ultra-infinite (“selfsimilar”) iff $\exists j : A \rightarrow A$ injective not bijective and preserving every notion that is definable from $\in$. 
• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system \(\text{ZF}\) (1922), which is incomplete: some statements are neither provable nor refutable from \(\text{ZF}\) (e.g., continuum hypoth.).

\[ \rightarrow \] Discover more properties of infinity and complete \(\text{ZF}\) with further axioms.

• Typically, large cardinals axioms = various solutions to the equation

\[
\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}.
\]

Examples: inaccessible cardinals, measurable cardinals, etc.

• General principle: “being selfsimilar implies being large”.
  - \(A\) is infinite iff \(\exists j : A \rightarrow A\) injective not bijective;

\[ a \text{ (self)embedding of } A \]

  - \(A\) is ultra-infinite (“selfsimilar”) iff \(\exists j : A \rightarrow A\) injective not bijective and preserving every notion that is definable from \(\in\).

• Example: \(\mathbb{N}\) infinite, but not ultra-infinite:
• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system \( \text{ZF} \) (1922), which is incomplete: some statements are neither provable nor refutable from \( \text{ZF} \) (e.g., continuum hypothesis).

\( \rightsquigarrow \) Discover more properties of infinity and complete \( \text{ZF} \) with further axioms.

• Typically, large cardinals axioms = various solutions to the equation

\[
\text{ultra-infinite} = \text{infinite} = \text{finite}.
\]

Examples: inaccessible cardinals, measurable cardinals, etc.

• General principle: “being selfsimilar implies being large”.
  - \( A \) is infinite iff \( \exists j : A \rightarrow A \) injective not bijective;

\[
\downarrow\text{(self)embedding of} A
\]

  - \( A \) is ultra-infinite (“selfsimilar”) iff \( \exists j : A \rightarrow A \) injective not bijective and preserving every notion that is definable from \( \epsilon \).

• Example: \( \mathbb{N} \) infinite, but not ultra-infinite: if \( j : \mathbb{N} \rightarrow \mathbb{N} \) preserves every notion that is definable from \( \epsilon \),
Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system $\text{ZF}$ (1922), which is incomplete: some statements are neither provable nor refutable from $\text{ZF}$ (e.g., continuum hypoth.).

Discover more properties of infinity and complete $\text{ZF}$ with further axioms...

Typically, large cardinals axioms = various solutions to the equation

$$\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}.$$  

Examples: inaccessible cardinals, measurable cardinals, etc.

General principle: “being selfsimilar implies being large”.

- $\mathcal{A}$ is infinite iff $\exists j : \mathcal{A} \rightarrow \mathcal{A}$ injective not bijective;

  a (self)embedding of $\mathcal{A}$

- $\mathcal{A}$ is ultra-infinite (“selfsimilar”) iff $\exists j : \mathcal{A} \rightarrow \mathcal{A}$ injective not bijective and preserving every notion that is definable from $\in$.  

Example: $\mathbb{N}$ infinite, but not ultra-infinite: if $j : \mathbb{N} \rightarrow \mathbb{N}$ preserves every notion that is definable from $\in$, then $j$ preserves $0, 1, 2$, etc.
• Set theory is a theory of infinity; it was axiomatized in the Zermelo-Fraenkel system \( \mathbf{ZF} \) (1922), which is incomplete: some statements are neither provable nor refutable from \( \mathbf{ZF} \) (e.g., continuum hypoth.)

\[ \text{→ Discover more properties of infinity and complete } \mathbf{ZF} \text{ with further axioms...} \]

• Typically, large cardinals axioms = various solutions to the equation

\[
\frac{\text{ultra-infinite}}{\text{infinite}} = \frac{\text{infinite}}{\text{finite}}.
\]

Examples: inaccessible cardinals, measurable cardinals, etc.

• General principle: “being selfsimilar implies being large”.
  - \( A \) is infinite iff \( \exists j : A \rightarrow A \) injective not bijective;
    
    a (self)embedding of \( A \)

  - \( A \) is ultra-infinite ("selfsimilar") iff \( \exists j : A \rightarrow A \) injective not bijective and preserving every notion that is definable from \( \in \).

• Example: \( \mathbb{N} \) infinite, but not ultra-infinite: if \( j : \mathbb{N} \rightarrow \mathbb{N} \) preserves every notion that is definable from \( \in \), then \( j \) preserves 0, 1, 2, etc. hence \( j \) is the identity map.
• **Definition.**— A **rank**
• **Definition.**— A rank is a set $\mathbb{R}$ such that $f : \mathbb{R} \rightarrow \mathbb{R}$ implies $f \in \mathbb{R}$. 
• **Definition.**— A rank is a set $\mathcal{R}$ such that $f : \mathcal{R} \to \mathcal{R}$ implies $f \in \mathcal{R}$. (this exists...)
• **Definition.**— A rank is a set $\mathbf{R}$ such that $f : \mathbf{R} \to \mathbf{R}$ implies $f \in \mathbf{R}$.  

• **Assume** that there exists a selfsimilar set:
• **Definition.**— A rank is a set $R$ such that $f : R \to R$ implies $f \in R$. (this exists...)

• **Assume** that there exists a selfsimilar set:
  - then there exists a selfsimilar rank, say $R$;
• **Definition.**— A rank is a set $\mathbf{R}$ such that $f : \mathbf{R} \to \mathbf{R}$ implies $f \in \mathbf{R}$. (this exists...)

• **Assume** that there exists a selfsimilar set:
  - then there exists a selfsimilar rank, say $\mathbf{R}$;
  - if $i$, $j$ are embeddings of $\mathbf{R}$,
• **Definition.** — A rank is a set \( R \) such that \( f : R \rightarrow R \) implies \( f \in R \). (this exists...)

• **Assume** that there exists a selfsimilar set:
  - then there exists a selfsimilar rank, say \( R \);
  - if \( i, j \) are embeddings of \( R \), then \( i : R \rightarrow R \) and \( j \in R \),
• **Definition.**— A rank is a set $R$ such that $f : R \rightarrow R$ implies $f \in R$.  

• **Assume** that there exists a selfsimilar set:
  - then there exists a selfsimilar rank, say $R$;
  - if $i, j$ are embeddings of $R$, then $i : R \rightarrow R$ and $j \in R$,
    hence we can apply $i$ to $j$;
- **Definition.**— A rank is a set $\mathbf{R}$ such that $f : \mathbf{R} \rightarrow \mathbf{R}$ implies $f \in \mathbf{R}$. (this exists...)

- **Assume** that there exists a selfsimilar set:
  - then there exists a selfsimilar rank, say $\mathbf{R}$;
  - if $i, j$ are embeddings of $\mathbf{R}$, then $i : \mathbf{R} \rightarrow \mathbf{R}$ and $j \in \mathbf{R}$,
  - “being an embedding” is definable from $\in$, hence we can apply $i$ to $j$;
• **Definition.**— A rank is a set \( R \) such that \( f : R \rightarrow R \) implies \( f \in R \). (this exists...)

• **Assume** that there exists a selfsimilar set:
  - then there exists a selfsimilar rank, say \( R \);
  - if \( i, j \) are embeddings of \( R \), then \( i : R \rightarrow R \) and \( j \in R \), hence we can apply \( i \) to \( j \);
  - “being an embedding” is definable from \( \in \), hence \( i(j) \) is an embedding;
Definition.— A rank is a set $R$ such that $f : R \to R$ implies $f \in R$. (this exists...)

Assume that there exists a selfsimilar set:
- then there exists a selfsimilar rank, say $R$;
- if $i, j$ are embeddings of $R$, then $i : R \to R$ and $j \in R$,
  hence we can apply $i$ to $j$;
- “being an embedding” is definable from $\in$,
  hence $i(j)$ is an embedding;
- “being the image of” is definable from $\in$, 
Definition.— A rank is a set $R$ such that $f : R \rightarrow R$ implies $f \in R$. (this exists...)

Assume that there exists a selfsimilar set:
- then there exists a selfsimilar rank, say $R$;
- if $i, j$ are embeddings of $R$, then $i : R \rightarrow R$ and $j \in R$, hence we can apply $i$ to $j$;
- “being an embedding” is definable from $\in$,
  hence $i(j)$ is an embedding;
- “being the image of” is definable from $\in$,
  hence $\ell = j(k)$ implies $i(\ell) = i(j)(i(k))$,
**Definition.**— A rank is a set \( R \) such that \( f : R \to R \) implies \( f \in R \). (this exists...)

**Assume** that there exists a selfsimilar set:
- then there exists a selfsimilar rank, say \( R \);
- if \( i, j \) are embeddings of \( R \), then \( i : R \to R \) and \( j \in R \), hence we can apply \( i \) to \( j \);
- “being an embedding” is definable from \( \in \), hence \( i(j) \) is an embedding;
- “being the image of” is definable from \( \in \), hence \( \ell = j(k) \) implies \( i(\ell) = i(j)(i(k)) \), i.e., \( i(j(k)) = i(j)(i(k)) \):
• **Definition.**— A *rank* is a set $R$ such that $f : R \to R$ implies $f \in R$.  

• **Assume** that there exists a selfsimilar set:
  - then there exists a selfsimilar rank, say $R$;
  - if $i, j$ are embeddings of $R$, then $i : R \to R$ and $j \in R$,
    hence we can apply $i$ to $j$;
  - “being an embedding” is definable from $\in$,
    hence $i(j)$ is an embedding;
  - “being the image of” is definable from $\in$,
    hence $\ell = j(k)$ implies $i(\ell) = i(j)(i(k))$, i.e., $i(j(k)) = i(j)(i(k))$: **LD-law.**
• Definition.— A rank is a set $R$ such that $f : R \rightarrow R$ implies $f \in R$. (this exists...)

• Assume that there exists a selfsimilar set:
  - then there exists a selfsimilar rank, say $R$;
  - if $i, j$ are embeddings of $R$, then $i : R \rightarrow R$ and $j \in R$, hence we can apply $i$ to $j$;
  - “being an embedding” is definable from $\in$,
    hence $i(j)$ is an embedding;
  - “being the image of” is definable from $\in$,
    hence $\ell = j(k)$ implies $i(\ell) = i(j)(i(k))$, i.e., $i(j(k)) = i(j)(i(k))$: LD-law.

• Proposition.— If $j$ is an embedding of a rank $R$,
  then the iterates of $j$ make an LD-structure $\text{Iter}(j)$. 
• **Definition.**— A rank is a set $R$ such that $f: R \to R$ implies $f \in R$. (this exists...)

• **Assume** that there exists a selfsimilar set:
  - then there exists a selfsimilar rank, say $R$;
  - if $i$, $j$ are embeddings of $R$, then $i: R \to R$ and $j \in R$, hence we can apply $i$ to $j$;
  - “being an embedding” is definable from $\in$, hence $i(j)$ is an embedding;
  - “being the image of” is definable from $\in$,
    hence $\ell = j(k)$ implies $i(\ell) = i(j)(i(k))$, i.e., $i(j(k)) = i(j)(i(k))$: LD-law.

• **Proposition.**— If $j$ is an embedding of a rank $R$,
  then the iterates of $j$ make an LD-structure $\text{Iter}(j)$.

  closure of $\{j\}$ under the “apply” operation: $j(j)$, $j(j)(j)$...
An embedding $j$ maps every ordinal $\alpha$ to an ordinal $j(\alpha) \geq \alpha$ ;
• An embedding $j$ maps every ordinal $\alpha$ to an ordinal $j(\alpha) \geq \alpha$; there exists a smallest ordinal $\alpha$ satisfying $j(\alpha) > \alpha$: 
• An embedding $j$ maps every ordinal $\alpha$ to an ordinal $j(\alpha) \geq \alpha$; there exists a smallest ordinal $\alpha$ satisfying $j(\alpha) > \alpha$: the critical ordinal $\text{crit}(j)$. 
• An embedding \( j \) maps every ordinal \( \alpha \) to an ordinal \( j(\alpha) \geq \alpha \);
  there exists a smallest ordinal \( \alpha \) satisfying \( j(\alpha) > \alpha \): the critical ordinal \( \text{crit}(j) \).
• Recall: \( j[p] := j(j)(j)\ldots(j) \), \( p \) terms.
• An embedding $j$ maps every ordinal $\alpha$ to an ordinal $j(\alpha) \geq \alpha$; there exists a smallest ordinal $\alpha$ satisfying $j(\alpha) > \alpha$: the critical ordinal $\text{crit}(j)$.


• **Proposition (Laver).**— Assume that $j$ is an embedding of a rank $R$. 
• An embedding \( j \) maps every ordinal \( \alpha \) to an ordinal \( j(\alpha) \geq \alpha \); there exists a smallest ordinal \( \alpha \) satisfying \( j(\alpha) > \alpha \): the critical ordinal \( \text{crit}(j) \).

• Recall: \( j_p := j(j)(j)...(j), \ p \) terms.

• Proposition (Laver).— Assume that \( j \) is an embedding of a rank \( R \). For \( k, k' \) in \( \text{Iter}(j) \), declare \( k \equiv_n k' \) if

\[
\text{“ } k \text{ and } k' \text{ coincide up to the level of } \text{crit}(j_{[2^n]}) \text{ ”}
\]
• An embedding $j$ maps every ordinal $\alpha$ to an ordinal $j(\alpha) \geq \alpha$; there exists a smallest ordinal $\alpha$ satisfying $j(\alpha) > \alpha$: the critical ordinal $\text{crit}(j)$.


---

• Proposition (Laver).— Assume that $j$ is an embedding of a rank $R$. For $k, k'$ in $\text{Iter}(j)$, declare $k \equiv_n k'$ if
  
  “ $k$ and $k'$ coincide up to the level of $\text{crit}(j[2n])$ ”

Then $\equiv_n$ is a congruence on $\text{Iter}(j)$,
• An embedding $j$ maps every ordinal $\alpha$ to an ordinal $j(\alpha) \geq \alpha$; there exists a smallest ordinal $\alpha$ satisfying $j(\alpha) > \alpha$: the critical ordinal $\text{crit}(j)$.


---

• Proposition (Laver).— Assume that $j$ is an embedding of a rank $R$. For $k, k'$ in $\text{Iter}(j)$, declare $k \equiv_n k'$ if

  “$k$ and $k'$ coincide up to the level of $\text{crit}(j[2^n])$”

Then $\equiv_n$ is a congruence on $\text{Iter}(j)$, it has $2^n$ classes,
• An embedding $j$ maps every ordinal $\alpha$ to an ordinal $j(\alpha) \geq \alpha$; there exists a smallest ordinal $\alpha$ satisfying $j(\alpha) > \alpha$: the critical ordinal $\text{crit}(j)$.

• Recall: $j_{[p]} := j(j)(j)...(j)$, $p$ terms.

• Proposition (Laver).— Assume that $j$ is an embedding of a rank $R$. For $k, k'$ in $\text{Iter}(j)$, declare $k \equiv_n k'$ if

  \[ \text{“ } k \text{ and } k' \text{ coincide up to the level of } \text{crit}(j_{[2^n]}) \text{”} \]

Then $\equiv_n$ is a congruence on $\text{Iter}(j)$, it has $2^n$ classes, which are those of $j, j_{[2]}, ..., j_{[2^n]}$. 

• An embedding $j$ maps every ordinal $\alpha$ to an ordinal $j(\alpha) \geq \alpha$; there exists a smallest ordinal $\alpha$ satisfying $j(\alpha) > \alpha$: the critical ordinal $\text{crit}(j)$.

• Recall: $j^p := j(j)(j)...(j)$, $p$ terms.

---

• **Proposition** (Laver).— Assume that $j$ is an embedding of a rank $R$. For $k, k'$ in $\text{Iter}(j)$, declare $k \equiv_n k'$ if

  “$k$ and $k'$ coincide up to the level of $\text{crit}(j^{2n})$”

Then $\equiv_n$ is a congruence on $\text{Iter}(j)$, it has $2^n$ classes, which are those of $j, j^{[2]}, ..., j^{[2^n]}$, the latter also being the class of $\text{id}$. 

Laver tables: the return

• An embedding $j$ maps every ordinal $\alpha$ to an ordinal $j(\alpha) \geq \alpha$; there exists a smallest ordinal $\alpha$ satisfying $j(\alpha) > \alpha$: the critical ordinal $\text{crit}(j)$.

• Recall: $j_{[p]} := j(j)(j)...(j)$, $p$ terms.

• Proposition (Laver).— Assume that $j$ is an embedding of a rank $R$. For $k, k'$ in $\text{Iter}(j)$, declare $k \equiv_n k'$ if

  “$k$ and $k'$ coincide up to the level of $\text{crit}(j_{[2^n]})$”

Then $\equiv_n$ is a congruence on $\text{Iter}(j)$, it has $2^n$ classes, which are those of $j, j_{[2]}, ..., j_{[2^n]}$, the latter also being the class of id.

exact definition of $\equiv_n$ : $\forall x \in R_\gamma (k(x) \cap R_\gamma = k'(x) \cap R_\gamma)$ with $\gamma = \text{crit}(j_{[2^n]})$
- An embedding $j$ maps every ordinal $\alpha$ to an ordinal $j(\alpha) \geq \alpha$; there exists a smallest ordinal $\alpha$ satisfying $j(\alpha) > \alpha$: the critical ordinal $\text{crit}(j)$.


- **Proposition (Laver).**— Assume that $j$ is an embedding of a rank $R$. For $k, k'$ in $\text{Iter}(j)$, declare $k \equiv_n k'$ if

  \[
  \text{"k and } k' \text{ coincide up to the level of } \text{crit}(j[2n]) \text{"}
  \]

Then $\equiv_n$ is a congruence on $\text{Iter}(j)$, it has $2^n$ classes, which are those of $j, j[2], ..., j[2n]$, the latter also being the class of $\text{id}$.

   exact definition of $\equiv_n : \forall x \in R_\gamma (k(x) \cap R_\gamma = k'(x) \cap R_\gamma)$ with $\gamma = \text{crit}(j[2n])$

- Hence $\text{Iter}(j)/\equiv_n$ is an LD-structure with $2^n$ elements s.t. $j[p] \ast j = j[p+1 \mod 2^n]$. 

• An embedding $j$ maps every ordinal $\alpha$ to an ordinal $j(\alpha) \geq \alpha$; there exists a smallest ordinal $\alpha$ satisfying $j(\alpha) > \alpha$: the critical ordinal $\text{crit}(j)$.


• **Proposition (Laver).**— Assume that $j$ is an embedding of a rank $R$.
For $k, k'$ in $\text{Iter}(j)$, declare $k \equiv_n k'$ if

$$
\text{“k and k' coincide up to the level of } \text{crit}(j[2^n]) \text{”}
$$

Then $\equiv_n$ is a congruence on $\text{Iter}(j)$, it has $2^n$ classes,
which are those of $j, j[2], \ldots, j[2^n]$, the latter also being the class of $\text{id}$.

exact definition of $\equiv_n : \forall x \in R_{\gamma} (k(x) \cap R_{\gamma} = k'(x) \cap R_{\gamma})$ with $\gamma = \text{crit}(j[2^n])$

• Hence $\text{Iter}(j)/\equiv_n$ is an LD-structure with $2^n$ elements s.t. $j[p] \ast j = j[p+1 \mod 2^n]$.

• **Corollary.**— The quotient-structure $\text{Iter}(j)/\equiv_n$ is (isomorphic to) the table $A_n$. 
The period of $2$
Lemma 1.— If \( j \) is an embedding, then, for \( m \leq n \) and \( p \leq 2^n \), TFAE
Lemma 1.— If $j$ is an embedding, then, for $m \leq n$ and $p \leq 2^n$, TFAE
- the embedding $j_{[p]}$ maps $\text{crit}(j_{[2^m]})$ to $\text{crit}(j_{[2^n]})$
Lemma 1.— If \( j \) is an embedding, then, for \( m \leq n \) and \( p \leq 2^n \), TFAE
- the embedding \( j_{[p]} \) maps \( \text{crit}(j_{[2m]}) \) to \( \text{crit}(j_{[2n]}) \)
- the period of \( p \) jumps from \( 2^m \) to \( 2^{m+1} \) between \( A_n \) and \( A_{n+1} \).
• **Lemma 1.**— If $j$ is an embedding, then, for $m \leq n$ and $p \leq 2^n$, TFAE
  - the embedding $j[p]$ maps $\text{crit}(j[2^m])$ to $\text{crit}(j[2^n])$
  - the period of $p$ jumps from $2^m$ to $2^{m+1}$ between $A_n$ and $A_{n+1}$.

• **Lemma 2.**— If $j$ is an embedding, then $j(j)(\alpha) \leq j(\alpha)$ holds for every ordinal $\alpha$. 
• Lemma 1.— If $j$ is an embedding, then, for $m \leq n$ and $p \leq 2^n$, TFAE
  - the embedding $j_p$ maps $\text{crit}(j_{2^m})$ to $\text{crit}(j_{2^n})$
  - the period of $p$ jumps from $2^m$ to $2^{m+1}$ between $A_n$ and $A_{n+1}$.

• Lemma 2.— If $j$ is an embedding, then $j(j)(\alpha) \leq j(\alpha)$ holds for every ordinal $\alpha$.

• Proof:
The period of 2

- **Lemma 1.**— If $j$ is an embedding, then, for $m \leq n$ and $p \leq 2^n$, TFAE
  - the embedding $j[p]$ maps $\text{crit}(j[2^m])$ to $\text{crit}(j[2^n])$
  - the period of $p$ jumps from $2^m$ to $2^{m+1}$ between $A_n$ and $A_{n+1}$.

- **Lemma 2.**— If $j$ is an embedding, then $j(j)(\alpha) \leq j(\alpha)$ holds for every ordinal $\alpha$.

- Proof: There exists $\beta$ satisfying $j(\beta) > \alpha$, 

• **Lemma 1.**— If $j$ is an embedding, then, for $m \leq n$ and $p \leq 2^n$, TFAE
  - the embedding $j[p]$ maps $\text{crit}(j[2^m])$ to $\text{crit}(j[2^n])$
  - the period of $p$ jumps from $2^m$ to $2^{m+1}$ between $A_n$ and $A_{n+1}$.

• **Lemma 2.**— If $j$ is an embedding, then $j(j)(\alpha) \leq j(\alpha)$ holds for every ordinal $\alpha$.

• Proof: There exists $\beta$ satisfying $j(\beta) > \alpha$, hence there exists a smallest such $\beta$, 

• **Lemma 1.**— If \( j \) is an embedding, then, for \( m \leq n \) and \( p \leq 2^n \), TFAE
  - the embedding \( j[p] \) maps \( \text{crit}(j[2^m]) \) to \( \text{crit}(j[2^n]) \)
  - the period of \( p \) jumps from \( 2^m \) to \( 2^{m+1} \) between \( A_n \) and \( A_{n+1} \).

• **Lemma 2.**— If \( j \) is an embedding, then \( j(j)(\alpha) \leq j(\alpha) \) holds for every ordinal \( \alpha \).

• **Proof:** There exists \( \beta \) satisfying \( j(\beta) > \alpha \), hence there exists a smallest such \( \beta \), which therefore satisfies \( j(\beta) > \alpha \) and
  \[ \forall \gamma < \beta \; (j(\gamma) \leq \alpha). \quad (\star) \]
• **Lemma 1.**— If \( j \) is an embedding, then, for \( m \leq n \) and \( p \leq 2^n \), TFAE
  - the embedding \( j_{[p]} \) maps \( \text{crit}(j_{[2^m]}) \) to \( \text{crit}(j_{[2^n]}) \)
  - the period of \( p \) jumps from \( 2^m \) to \( 2^m + 1 \) between \( A_n \) and \( A_{n+1} \).

• **Lemma 2.**— If \( j \) is an embedding, then \( j(j)(\alpha) \leq j(\alpha) \) holds for every ordinal \( \alpha \).

• Proof: There exists \( \beta \) satisfying \( j(\beta) > \alpha \), hence there exists a smallest such \( \beta \), which therefore satisfies \( j(\beta) > \alpha \) and
  \[
  \forall \gamma < \beta \ (j(\gamma) \leq \alpha).
  \]  
\( (\ast) \)

Applying \( j \) to \( (\ast) \) gives
  \[
  \forall \gamma < j(\beta) \ (j(j)(\gamma) \leq j(\alpha)).
  \]  
\( (\ast\ast) \)
Lemma 1.— If $j$ is an embedding, then, for $m \leq n$ and $p \leq 2^n$, TFAE
- the embedding $j[p]$ maps $\text{crit}(j[2^m])$ to $\text{crit}(j[2^n])$
- the period of $p$ jumps from $2^m$ to $2^{m+1}$ between $A_n$ and $A_{n+1}$.

Lemma 2.— If $j$ is an embedding, then $j(j)(\alpha) \leq j(\alpha)$ holds for every ordinal $\alpha$.

Proof: There exists $\beta$ satisfying $j(\beta) > \alpha$, hence there exists a smallest such $\beta$, which therefore satisfies $j(\beta) > \alpha$ and
\[
\forall \gamma < \beta \ (j(\gamma) \leq \alpha). \quad (\ast)
\]
Applying $j$ to (\ast) gives
\[
\forall \gamma < j(\beta) \ (j(j)(\gamma) \leq j(\alpha)). \quad (\ast\ast)
\]
Taking $\gamma = \alpha$ in (\ast\ast) yields $j(j)(\alpha) \leq j(\alpha)$. \qed
• **Lemma 1.**— If \( j \) is an embedding, then, for \( m \leq n \) and \( p \leq 2^n \), TFAE
  - the embedding \( j[p] \) maps \( \text{crit}(j[2^m]) \) to \( \text{crit}(j[2^n]) \)
  - the period of \( p \) jumps from \( 2^m \) to \( 2^{m+1} \) between \( \mathcal{A}_n \) and \( \mathcal{A}_{n+1} \).

• **Lemma 2.**— If \( j \) is an embedding, then \( j(j)(\alpha) \leq j(\alpha) \) holds for every ordinal \( \alpha \).

• **Proof:** There exists \( \beta \) satisfying \( j(\beta) > \alpha \), hence there exists a smallest such \( \beta \), which therefore satisfies \( j(\beta) > \alpha \) and
  \[
  \forall \gamma < \beta \ (j(\gamma) \leq \alpha). \tag{*}
  \]
  Applying \( j \) to \((*)\) gives
  \[
  \forall \gamma < j(\beta) \ (j(j)(\gamma) \leq j(\alpha)). \tag{**}
  \]
  Taking \( \gamma = \alpha \) in \((**\)) yields \( j(j)(\alpha) \leq j(\alpha) \). \( \square \)

• **Proposition (Laver).**— If there exists a self-similar set,
  then \( \pi_n(2) \geq \pi_n(1) \) holds for every \( n \).
The period of 1

- **Theorem** (Steel, Laver).
Theorem (Steel, Laver).— If $j$ is an embedding of a rank $R$, 

-
• **Theorem (Steel, Laver).**— If $j$ is an embedding of a rank $\mathcal{R}$, then the sequence $\text{crit}(j_{[2n]})$ is unbounded in $\mathcal{R}$. 
• **Theorem** *(Steel, Laver).*— If $j$ is an embedding of a rank $R$, then the sequence $\text{crit}(j_{[2^n]})$ is unbounded in $R$.

• **Proposition** *(Laver).*— If there exists a selfsimilar set,
• **Theorem (Steel, Laver).**— If $j$ is an embedding of a rank $R$, then the sequence $\text{crit}(j_{[2^n]})$ is unbounded in $R$.

• **Proposition (Laver).**— If there exists a selfsimilar set, the sequence of periods $\pi_n(1)$ tends to $\infty$ with $n$. 
• **Theorem (Steel, Laver).**— If $j$ is an embedding of a rank $\mathbb{R}$, then the sequence $\text{crit}(j_{[2n]})$ is unbounded in $\mathbb{R}$.

• **Proposition (Laver).**— If there exists a selfsimilar set, the sequence of periods $\pi_n(1)$ tends to $\infty$ with $n$.

• **Corollary.**— If there exists a selfsimilar set, the substructure generated by $(1, 1, 1, \ldots)$ in the inverse limit of all $\mathbb{A}_n$ is free.
• Did we answer the questions about Laver tables?
• Did we answer the questions about Laver tables?
  — No, because the existence of a selfsimilar set is a large cardinal axiom,
Did we answer the questions about Laver tables?
  — No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable,
• Did we answer the questions about Laver tables?
  — No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from ZF.
• Did we answer the questions about Laver tables?
  — No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from $\text{ZF}$.

• Is the large cardinal assumption necessary?
• Did we answer the questions about Laver tables?
  — **No**, because the existence of a selfsimilar set is a large cardinal axiom,
    hence unprovable, and whose non-contradiction cannot be proved from **ZF**.

• Is the large cardinal assumption necessary?
  — **Probably not**... So far, we cannot avoid it, but nothing indicates that it should
    be necessary;
• Did we answer the questions about Laver tables?
  — No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from ZF.

• Is the large cardinal assumption necessary?
  — Probably not... So far, we cannot avoid it, but nothing indicates that it should be necessary; and there is no systematic method for avoiding it.
• Did we answer the questions about Laver tables?
  — **No**, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from **ZF**.

• Is the large cardinal assumption necessary?
  — **Probably not**... So far, we cannot avoid it, but nothing indicates that it should be necessary; and there is no systematic method for avoiding it.

• An attempt:
• Did we answer the questions about Laver tables?
  — No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from ZF.

• Is the large cardinal assumption necessary?
  — Probably not... So far, we cannot avoid it, but nothing indicates that it should be necessary; and there is no systematic method for avoiding it.

• An attempt: Drápal's program,
• Did we answer the questions about Laver tables?
  — No, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from ZF.

• Is the large cardinal assumption necessary?
  — Probably not... So far, we cannot avoid it, but nothing indicates that it should be necessary; and there is no systematic method for avoiding it.

• An attempt: Drápal’s program, three steps completed so far...
• Did we answer the questions about Laver tables?
  — No, because the existence of a selfsimilar set is a large cardinal axiom,
    hence unprovable, and whose non-contradiction cannot be proved from ZF.

• Is the large cardinal assumption necessary?
  — Probably not... So far, we cannot avoid it, but nothing indicates that it should
    be necessary; and there is no systematic method for avoiding it.

• An attempt: Drápal’s program, three steps completed so far...

• A similar example: the orderability of free LD-structures, first established using a
  selfsimilar set,
• Did we answer the questions about Laver tables?
  — **No**, because the existence of a selfsimilar set is a large cardinal axiom, hence unprovable, and whose non-contradiction cannot be proved from **ZF**.

• Is the large cardinal assumption necessary?
  — **Probably not**... So far, we cannot avoid it, but nothing indicates that it should be necessary; and there is no systematic method for avoiding it.

• An attempt: **Drápal**'s program, three steps completed so far...

• A similar example: the orderability of free LD-structures, **first** established using a selfsimilar set, **then** using a direct argument (**based on braid groups**).
Plan:

- 1. Combinatorial description of Laver tables
- 2. Laver tables and set theory
- 3. Laver tables and low-dimensional topology
• Planar diagrams:
• Planar diagrams:
• Planar diagrams:
• Planar diagrams:
Planar diagrams:

\[\rightsquigarrow\text{ projections of curves embedded in } \mathbb{R}^3\]
• Planar diagrams:

\[ \cdots \]

\( \rightsquigarrow \) projections of curves embedded in \( \mathbb{R}^3 \)

• Generic question: recognizing whether two diagrams are (projections of) isotopic figures
• Planar diagrams:

• Generic question: recognizing whether two diagrams are (projections of) isotopic figures

\[ \rightsquigarrow \] find isotopy invariants.
Two diagrams represent isotopic figures \textit{iff} one can go from the former to the latter using finitely many \textbf{Reidemeister moves}:
• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

- type I:
Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

- type I:

![Reidemeister Move Type I](image-url)
• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

- type I : 

\[ \sim \quad \_ \quad \_ \quad \sim \]
Reidemeister moves

- Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

  - type I:

  - type II:
• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

- type I:

- type II:
• Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

- type I:

- type II:
Reidemeister moves

- Two diagrams represent isotopic figures iff one can go from the former to the latter using finitely many Reidemeister moves:

- type I:

- type II:

- type III:
Two diagrams represent isotopic figures \textit{iff} one can go from the former to the latter using finitely many \textbf{Reidemeister moves}:

- type I :

- type II :

- type III :
• Fix a set (of colors) $S$ equipped with two operations $\ast, \bar{\ast}$,
• Fix a set \((\text{of colors})\) \(S\) equipped with two operations \(\ast, \bar{\ast}\), and color the strands in diagrams obeying the rules:

\[
\begin{align*}
  \overset{b}{\rightarrow} & \overset{a}{\rightarrow} \\
  \overset{a}{\rightarrow} & \overset{a \ast b}{\rightarrow}
\end{align*}
\]
• Fix a set (of colors) $S$ equipped with two operations $\ast, \bar{\ast}$, and color the strands in diagrams obeying the rules:

\[
\begin{align*}
&b \rightarrow a \\
&a \rightarrow a \ast b
\end{align*}
\text{ et }
\begin{align*}
&b \rightarrow a \bar{\ast} b \\
&a \rightarrow b
\end{align*}
\]
• Fix a set (of colors) $S$ equipped with two operations $\ast$, $\bar{\ast}$, and color the strands in diagrams obeying the rules:

$$
\begin{align*}
  b & \xrightarrow{\ast} a \\
  a & \xrightarrow{\ast} a \ast b
\end{align*}
$$

et

$$
\begin{align*}
  b & \xrightarrow{\ast} a \bar{\ast} b \\
  a & \xrightarrow{\ast} b
\end{align*}
$$

• Action of Reidemeister moves on colors:
• Fix a set (of colors) $S$ equipped with two operations $\ast, \bar{\ast}$, and color the strands in diagrams obeying the rules:

\[
\begin{align*}
    b & \xrightarrow{a} a \\
    a & \xrightarrow{a \ast b}
\end{align*}
\quad \text{et} \quad \begin{align*}
    b & \xrightarrow{a \bar{\ast} b} \\
    a & \xrightarrow{b}
\end{align*}

• Action of Reidemeister moves on colors:

\[
\begin{align*}
    c & \xrightarrow{b} \\
    b & \xrightarrow{a}
\end{align*}
\]
• Fix a set (of colors) $S$ equipped with two operations $\ast$, $\bar{\ast}$, and color the strands in diagrams obeying the rules:

\[ \begin{array}{ccc}
    b & \longrightarrow & a \\
    a & \longrightarrow & a \ast b \\
    b & \longrightarrow & a \bar{\ast} b
\end{array} \]

et

\[ \begin{array}{ccc}
    b & \longrightarrow & a \\
    a & \longrightarrow & b
\end{array} \]

• Action of Reidemeister moves on colors:

\[ \begin{array}{ccc}
    c & \longrightarrow & b \\
    b & \longrightarrow & b \ast c \\
    a & \longrightarrow & a \ast (b \ast c)
\end{array} \]
• Fix a set (of colors) $S$ equipped with two operations $\ast, \bar{\ast}$, and color the strands in diagrams obeying the rules:

\[
\begin{align*}
    b & \longrightarrow a & \text{et} & b & \longrightarrow a \ast b \\
    a & \longrightarrow a \ast b & & a & \longrightarrow b
\end{align*}
\]

• Action of Reidemeister moves on colors:

\[
\begin{align*}
    c & \longrightarrow b & \longrightarrow a & \text{et} & c & \longrightarrow b \longrightarrow a \\
    b & \longrightarrow b \ast c & \longrightarrow a \ast b & \sim & b & \longrightarrow a \\
    a & \longrightarrow a \ast (b \ast c)
\end{align*}
\]
• Fix a set (of colors) $S$ equipped with two operations $\ast, \overline{\ast}$, and color the strands in diagrams obeying the rules:

\[
\begin{align*}
    b & \ast a \\
    a & \ast b \\
\end{align*}
\hspace{1cm}
\begin{align*}
    b & \overline{\ast} a \\
    a & \overline{\ast} b \\
\end{align*}
\]

• Action of Reidemeister moves on colors:

\[
\begin{align*}
    c & \ast b \\
    b & \ast c \\
    a & \ast (b \ast c) \\
\end{align*}
\hspace{1cm}
\begin{align*}
    c & \ast a \\
    b & \ast a \\
    a & \ast (b \ast c) \\
\end{align*}
\]
• Fix a set (of colors) $S$ equipped with two operations $\ast, \bar{\ast}$, and color the strands in diagrams obeying the rules:

$$
\begin{align*}
&b \rightarrow a \\
&a \rightarrow a \ast b
\end{align*}
$$

et

$$
\begin{align*}
&b \rightarrow a \bar{\ast} b \\
&a \rightarrow b
\end{align*}
$$

• Action of Reidemeister moves on colors:

$$
\begin{align*}
&c \rightarrow b \rightarrow a \\
&b \rightarrow b \ast c \rightarrow a \ast b
\end{align*}
$$

$\sim$

$$
\begin{align*}
&c \rightarrow a \rightarrow a \ast c \\
&a \rightarrow a \ast b
\end{align*}
$$

$\sim$

Hence: $S$-colorings invariant under Reidemeister move III $\Leftrightarrow (S, \ast)$ LD-structure
• Idem for Reidemeister move II:
Idem for Reidemeister move II:

There exists $\bar{*}$ satisfying $x \ast (x \ast y) = y$ and $x \ast (x \ast y) = y$
iff the left-translations of $(S, \ast)$ are bijections.
• Idem for Reidemeister move II:

\[
\begin{array}{c}
\text{a} \\
\text{a} \ast \text{b} \\
\text{a} \\
\text{a} \ast (\text{a} \ast \text{b}) \\
\text{b} \\
\end{array}
\]

There exists \( \ast \) satisfying \( x \ast (x \ast y) = y \) and \( x \ast (x \ast y) = y \)
iff the left-translations of \((S, \ast)\) are bijections.

\(\Rightarrow\) Hence: \( S \)-colorings invariant under Reidemeister moves II+III \(\Leftrightarrow\)
\[(S, \ast)\] is an LD-structure with bijective left-translations
• Idem for Reidemeister move II:

There exists $\bar{*}$ satisfying $x \ast (x \ast y) = y$ and $x \ast (x \ast y) = y$
iff the left-translations of $(S, \ast)$ are bijections.

$\Rightarrow$ Hence: $S$-colorings invariant under Reidemeister moves II+III $\iff$
$(S, \ast)$ is an LD-structure with bijective left-translations

a rack (Fenn–Rourke)
- Idem for Reidemeister move II:

\[
\begin{align*}
  b & \leadsto a \leadsto a \ast (a \ast b) \\
  a & \leadsto a \ast b \leadsto a
\end{align*}
\]

There exists \( \ast \) satisfying \( x \ast (x \ast y) = y \) and \( x \ast (x \ast y) = y \) iff the left-translations of \((S, \ast)\) are bijections.

\[\Rightarrow\] Hence: \( S \)-colorings invariant under Reidemeister moves II+III \( \iff \) \((S, \ast)\) is an LD-structure with bijective left-translations

\[
\text{a rack (Fenn–Rourke)}
\]

- Idem for Reidemeister move I:

\[
\begin{align*}
  a & \leadsto a \ast a \leadsto a \\
  a & \leadsto a \ast a \leadsto a \ast a
\end{align*}
\]
• Idem for Reidemeister move II:

\[
\begin{align*}
\text{b} &\xrightarrow{a} \text{a} \xrightarrow{a \ast (a \ast b)} \text{b} \\
\text{a} &\xrightarrow{a \ast b} \text{a} \\
\end{align*}
\]

There exists \( \bar{\ast} \) satisfying \( x \ast (x \ast y) = y \) and \( x \ast (x \ast y) = y \)
iff the left-translations of \((S, \ast)\) are bijections.

\[\Rightarrow \text{ Hence: } S\text{-colorings invariant under Reidemeister moves II+III } \iff (S, \ast) \text{ is an LD-structure with bijective left-translations} \]
\[\text{a rack (Fenn–Rourke)}\]

• Idem for Reidemeister move I:

\[
\begin{align*}
\text{a} &\xrightarrow{a} \text{a} \ast \text{a} \\
\text{a} &\xrightarrow{a} \text{a} \xrightarrow{a} \text{a} \xrightarrow{\bar{a} \ast \text{a}} \text{a} \\
\end{align*}
\]

\[\Rightarrow \text{ Hence: } S\text{-colorings invariant under Reidemeister moves I+II+III } \iff (S, \ast) \text{ is an idempotent rack}\]
• Idem for Reidemeister move II:

There exists $\bar{\ast}$ satisfying $x \ast (x \bar{\ast} y) = y$ and $x \bar{\ast} (x \ast y) = y$
iff the left-translations of $(S, \ast)$ are bijections.

Hence: $S$-colorings invariant under Reidemeister moves II+III $\iff$
$(S, \ast)$ is an LD-structure with bijective left-translations
\[ \uparrow \]
a rack (Fenn–Rourke)

• Idem for Reidemeister move I:

Hence: $S$-colorings invariant under Reidemeister moves I+II+III $\iff$
$(S, \ast)$ is an idempotent rack
\[ \uparrow \]
a quandle (Joyce)
• Theoretical (Joyce, Matveev): The “fundamental quandle” is a complete invariant w.r.t. isotopy up to mirror symmetry.
Cocycles

- Theoretical (Joyce, Matveev): The "fundamental quandle" is a complete invariant w.r.t. isotopy up to mirror symmetry.

- Practical (Carter, Kamada): use (co)-homology of LD-structures.
Theoretical (Joyce, Matveev): The “fundamental quandle” is a complete invariant w.r.t. isotopy up to mirror symmetry.

Practical (Carter, Kamada): use (co)-homology of LD-structures.

Definition. A 2-cocycle on an LD-structure $(S, \ast)$ is a map $\phi : S^2 \to \mathbb{Z}$ satisfying $\phi(x, z) + \phi(x \ast y, x \ast z) = \phi(y, z) + \phi(x, y \ast z)$. 
• Theoretical (Joyce, Matveev): The “fundamental quandle” is a complete invariant w.r.t. isotopy up to mirror symmetry.

• Practical (Carter, Kamada): use (co)-homology of LD-structures.

• **Definition.** — A 2-cocycle on an LD-structure \((S, \ast)\) is a map \(\phi : S^2 \to \mathbb{Z}\) satisfying \(\phi(x, z) + \phi(x \ast y, x \ast z) = \phi(y, z) + \phi(x, y \ast z)\).

• Every 2-cocycle provides an invariant w.r.t. Reidemeister move III (and more...):
• Theoretical (Joyce, Matveev): The “fundamental quandle” is a complete invariant w.r.t. isotopy up to mirror symmetry.

• Practical (Carter, Kamada): use (co)-homology of LD-structures.

• **Definition.**— A 2-cocycle on an LD-structure $(S, *)$ is a map $\phi : S^2 \to \mathbb{Z}$ satisfying $\phi(x, z) + \phi(x*y, x*z) = \phi(y, z) + \phi(x, y*z)$.

• Every 2-cocycle provides an invariant w.r.t. Reidemeister move III (and more...):
Theoretical (Joyce, Matveev): The “fundamental quandle” is a complete invariant w.r.t. isotopy up to mirror symmetry.

Practical (Carter, Kamada): use (co)-homology of LD-structures.

**Definition.** — A 2-cocycle on an LD-structure \((S, \ast)\) is a map \(\phi : S^2 \to \mathbb{Z}\) satisfying \(\phi(x, z) + \phi(x \ast y, x \ast z) = \phi(y, z) + \phi(x, y \ast z)\).

Every 2-cocycle provides an invariant w.r.t. Reidemeister move III (and more...):
• Theoretical (Joyce, Matveev): The “fundamental quandle” is a complete invariant w.r.t. isotopy up to mirror symmetry.

• Practical (Carter, Kamada): use (co)-homology of LD-structures.

**Definition.**— A 2-cocycle on an LD-systructure $(S, \ast)$ is a map $\phi : S^2 \to \mathbb{Z}$ satisfying $\phi(x, z) + \phi(x \ast y, x \ast z) = \phi(y, z) + \phi(x, y \ast z)$.

• Every 2-cocycle provides an invariant w.r.t. Reidemeister move III (and more...):
Cocycles

- Theoretical (Joyce, Matveev): The “fundamental quandle” is a complete invariant w.r.t. isotopy up to mirror symmetry.

- Practical (Carter, Kamada): use (co)-homology of LD-structures.

- Definition. — A 2-cocycle on an LD-structure \((S, \ast)\) is a map \(\phi: S^2 \to \mathbb{Z}\) satisfying \(\phi(x, z) + \phi(x \ast y, x \ast z) = \phi(y, z) + \phi(x, y \ast z)\).

- Every 2-cocycle provides an invariant w.r.t. Reidemeister move III (and more...):
• Theoretical (Joyce, Matveev): The “fundamental quandle” is a complete invariant w.r.t. isotopy up to mirror symmetry.

• Practical (Carter, Kamada): use (co)-homology of LD-structures.

• Definition.— A 2-cocycle on an LD-structure \((S, \ast)\) is a map \(\phi : S^2 \to \mathbb{Z}\) satisfying \(\phi(x, z) + \phi(x \ast y, x \ast z) = \phi(y, z) + \phi(x, y \ast z)\).

• Every 2-cocycle provides an invariant w.r.t. Reidemeister move III (and more...):
Cocycles

- **Theoretical (Joyce, Matveev):** The “fundamental quandle” is a complete invariant w.r.t. isotopy up to mirror symmetry.

- **Practical (Carter, Kamada):** use (co)-homology of LD-structures.

**Definition.**— A 2-cocycle on an LD-structure \((S, *)\) is a map \(\phi : S^2 \to \mathbb{Z}\) satisfying \(\phi(x, z) + \phi(x*y, x*z) = \phi(y, z) + \phi(x, y*z)\).

- **Every 2-cocycle provides an invariant w.r.t. Reidemeister move III (and more...):**

![Diagram](attachment:image.png)
• **Theoretical** (*Joyce, Matveev*): The “fundamental quandle” is a complete invariant w.r.t. isotopy up to mirror symmetry.

• **Practical** (*Carter, Kamada*): use (co)-homology of LD-structures.

---

**Definition.** — A 2-cocycle on an LD-structure \((S, \ast)\) is a map \(\phi : S^2 \to \mathbb{Z}\) satisfying
\[
\phi(x, z) + \phi(x \ast y, x \ast z) = \phi(y, z) + \phi(x, y \ast z).
\]

• Every 2-cocycle provides an invariant w.r.t. Reidemeister move III (and more...):
• Theoretical (Joyce, Matveev): The “fundamental quandle” is a complete invariant w.r.t. isotopy up to mirror symmetry.

• Practical (Carter, Kamada): use (co)-homology of LD-structures.

**Definition.**— A 2-cocycle on an LD-structure \((S, \ast)\) is a map \(\phi : S^2 \to \mathbb{Z}\) satisfying \(\phi(x, z) + \phi(x \ast y, x \ast z) = \phi(y, z) + \phi(x, y \ast z)\).

• Every 2-cocycle provides an invariant w.r.t. Reidemeister move III (and more...):
• Theoretical (Joyce, Matveev): The “fundamental quandle” is a complete invariant w.r.t. isotopy up to mirror symmetry.

• Practical (Carter, Kamada): use (co)-homology of LD-structures.

**Definition.** — A 2-cocycle on an LD-systructure \((S, \ast)\) is a map \(\phi : S^2 \rightarrow \mathbb{Z}\) satisfying \(\phi(x, z) + \phi(x \ast y, x \ast z) = \phi(y, z) + \phi(x, y \ast z)\).

• Every 2-cocycle provides an invariant w.r.t. Reidemeister move III (and more...):
• Theoretical (Joyce, Matveev): The “fundamental quandle” is a complete invariant w.r.t. isotopy up to mirror symmetry.

• Practical (Carter, Kamada): use (co)-homology of LD-structures.

**Definition.** — A 2-cocycle on an LD-systructure \((S, \ast)\) is a map \(\phi : S^2 \to \mathbb{Z}\) satisfying \(\phi(x, z) + \phi(x \ast y, x \ast z) = \phi(y, z) + \phi(x, y \ast z)\).

• Every 2-cocycle provides an invariant w.r.t. Reidemeister move III (and more...):
• Theoretical (Joyce, Matveev): The “fundamental quandle” is a complete invariant w.r.t. isotopy up to mirror symmetry.

• Practical (Carter, Kamada): use (co)-homology of LD-structures.

**Definition.**— A 2-cocycle on an LD-structure \((S, \ast)\) is a map \(\phi : S^2 \rightarrow \mathbb{Z}\) satisfying \(\phi(x, z) + \phi(x \ast y, x \ast z) = \phi(y, z) + \phi(x, y \ast z)\).

• Every 2-cocycle provides an invariant w.r.t. Reidemeister move III (and more...):
Cocycles

- Theoretical (Joyce, Matveev): The “fundamental quandle” is a complete invariant w.r.t. isotopy up to mirror symmetry.

- Practical (Carter, Kamada): use (co)-homology of LD-structures.

**Definition.**— A 2-cocycle on an LD-structure $(S, \ast)$ is a map $\phi : S^2 \to \mathbb{Z}$ satisfying

$$\phi(x, z) + \phi(x \ast y, x \ast z) = \phi(y, z) + \phi(x, y \ast z).$$

- Every 2-cocycle provides an invariant w.r.t. Reidemeister move III (and more...):
• Laver tables are LD-structures, but neither racks (nor quandles):
• Laver tables are LD-structures, but neither racks (nor quandles):
  not obvious to use them in topology,
• Laver tables are LD-structures, but neither racks (nor quandles):
  not obvious to use them in topology, but possible (Przytycki, ...),
Laver tables are LD-structures, but neither racks (nor quandles):
not obvious to use them in topology, but possible (Przytycki, ...),
step 1: determine the associated cocycles.
Laver tables are LD-structures, but neither racks (nor quandles):
not obvious to use them in topology, but possible (Przytycki, ...),
step 1: determine the associated cocycles.

Proposition (D., Lebed).— The 2-cocycles for $A_n$ make a free $\mathbb{Z}$-module of rank $2^n$, 
Laver tables are LD-structures, but neither racks (nor quandles):
   not obvious to use them in topology, but possible (Przytycki, ...),
   step 1: determine the associated cocycles.

• Proposition (D., Lebed).— The 2-cocycles for $A_n$ make a free $\mathbb{Z}$-module of rank $2^n$, with an explicit basis made of $\{0, 1\}$-valued functions.
• Laver tables are LD-structures, but neither racks (nor quandles):
  not obvious to use them in topology, but possible (Przytycki, ...),
  step 1: determine the associated cocycles.

• Proposition (D., Lebed).— The 2-cocycles for $A_n$ make a free $\mathbb{Z}$-module of rank $2^n$, with an explicit basis made of $\{0, 1\}$-valued functions.

<table>
<thead>
<tr>
<th>$\Psi_{1,3}$</th>
<th>12345678</th>
<th>$\Psi_{2,3}$</th>
<th>12345678</th>
<th>$\Psi_{3,3}$</th>
<th>12345678</th>
<th>$\Psi_{4,3}$</th>
<th>12345678</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
<td>1 1</td>
<td>1</td>
</tr>
</tbody>
</table>
Laver tables are LD-structures, but neither racks (nor quandles):

- not obvious to use them in topology, but possible (Przytycki, ...),
- step 1 : determine the associated cocycles.

**Proposition (D., Lebed).**— The 2-cocycles for $\mathcal{A}_n$ make a free $\mathbb{Z}$-module of rank $2^n$, with an explicit basis made of $\{0, 1\}$-valued functions.

\[
\begin{align*}
\psi_{1,3} & \quad 12345678 \\
1 & \quad 1 \ldots \ldots \\
2 & \quad 1 \ldots \ldots \\
3 & \quad 1 \ldots \ldots \\
4 & \quad 1 \ldots \ldots \\
5 & \quad 1 \ldots \ldots \\
6 & \quad 1 \ldots \ldots \\
7 & \quad 1 \ldots \ldots \\
8 & \quad \ldots \ldots \\
\psi_{2,3} & \quad 12345678 \\
1 & \quad 1 \ldots \ldots \\
2 & \quad 1 \ldots \ldots \\
3 & \quad 1 \ldots \ldots \\
4 & \quad 1 \ldots \ldots \\
5 & \quad 1 \ldots \ldots \\
6 & \quad 1 \ldots \ldots \\
7 & \quad 1 \ldots \ldots \\
8 & \quad \ldots \ldots \\
\psi_{3,3} & \quad 12345678 \\
1 & \quad 1 \ldots \ldots \\
2 & \quad 1 \ldots \ldots \\
3 & \quad 1 \ldots \ldots \\
4 & \quad 1 \ldots \ldots \\
5 & \quad 1 \ldots \ldots \\
6 & \quad 1 \ldots \ldots \\
7 & \quad 1 \ldots \ldots \\
8 & \quad \ldots \ldots \\
\psi_{4,3} & \quad 12345678 \\
1 & \quad 1 \ldots \ldots \\
2 & \quad 1 \ldots \ldots \\
3 & \quad 1 \ldots \ldots \\
4 & \quad 1 \ldots \ldots \\
5 & \quad 1 \ldots \ldots \\
6 & \quad 1 \ldots \ldots \\
7 & \quad 1 \ldots \ldots \\
8 & \quad \ldots \ldots \\
\psi_{5,3} & \quad 12345678 \\
1 & \quad 1 \ldots \ldots \\
2 & \quad 1 \ldots \ldots \\
3 & \quad 1 \ldots \ldots \\
4 & \quad \ldots \ldots \\
5 & \quad 1 \ldots \ldots \\
6 & \quad 1 \ldots \ldots \\
7 & \quad 1 \ldots \ldots \\
8 & \quad \ldots \ldots \\
\psi_{6,3} & \quad 12345678 \\
1 & \quad 1 \ldots \ldots \\
2 & \quad 1 \ldots \ldots \\
3 & \quad 1 \ldots \ldots \\
4 & \quad \ldots \ldots \\
5 & \quad 1 \ldots \ldots \\
6 & \quad 1 \ldots \ldots \\
7 & \quad 1 \ldots \ldots \\
8 & \quad \ldots \ldots \\
\psi_{7,3} & \quad 12345678 \\
1 & \quad 1 \ldots \ldots \\
2 & \quad 1 \ldots \ldots \\
3 & \quad 1 \ldots \ldots \\
4 & \quad \ldots \ldots \\
5 & \quad 1 \ldots \ldots \\
6 & \quad 1 \ldots \ldots \\
7 & \quad 1 \ldots \ldots \\
8 & \quad \ldots \ldots \\
\end{align*}
\]
• These cocycles are not trivial:
• These cocycles are not trivial: for instance, the “period” cocycle \( \psi_n \) is not trivial.

s.t. \( \psi_n(x, y) = 1 \) iff \( y \) is a multiple of the period of \( x \) in \( A_n \).
These cocycles are not trivial: for instance, the “period” cocycle $\psi_n$

s.t. $\psi_n(x, y) = 1$ iff $y$ is a multiple of the period of $x$ in $A_n$.

$$\exists z \left( y = z \ast x \right)$$

Proofs: Relie on the right-divisibility relation of $A_n$,
These cocycles are not trivial: for instance, the “period” cocycle $\psi_n$ s.t. $\psi_n(x, y) = 1$ iff $y$ is a multiple of the period of $x$ in $A_n$.

$\exists z \ (y = z \ast x)$

Proofs: Relie on the right-divisibility relation of $A_n$, which is a partial order:
• These cocycles are not trivial: for instance, the “period” cocycle $\psi_n$
  s.t. $\psi_n(x, y) = 1$ iff $y$ is a multiple of the period of $x$ in $A_n$.

$$\exists z \ (y = z \ast x)$$

• Proofs: Relie on the right-divisibility relation of $A_n$, which is a partial order:

• Analogous results for 3-cocycles.
• These cocycles are not trivial: for instance, the “period” cocycle $\psi_n$ s.t. $\psi_n(x, y) = 1$ iff $y$ is a multiple of the period of $x$ in $A_n$.

\[
\exists z \quad (y = z \ast x)
\]

• Proofs: Relie on the right-divisibility relation of $A_n$, which is a partial order:

![Diagram](image.png)

• Analogous results for $3$-cocycles.

• **Question**: What do these new positive braid invariants count?
• These cocycles are not trivial: for instance, the “period” cocycle $\psi_n$
  s.t. $\psi_n(x, y) = 1$ iff $y$ is a multiple of the period of $x$ in $A_n$.

  $\exists z (y = z \ast x)$

• Proofs: Relie on the right-divisibility relation of $A_n$, which is a partial order:

• Analogous results for 3-cocycles.

• **Question**: What do these new positive braid invariants count?

• **Conclusion**: Reasonable hope of applying Laver tables in low-dimensional topology.
• Are the properties of periods in Laver tables an application of set theory?
• Are the properties of periods in Laver tables an application of set theory?
  - So far, yes;
Are the properties of periods in Laver tables an application of set theory?
- So far, yes;
- In the future, formally no if one finds alternative proofs that do not use large cardinals.
Are the properties of periods in Laver tables an application of set theory?
- So far, yes;
- In the future, formally no if one finds alternative proofs that do not use large cardinals.
- But, in any case, it is set theory that made the properties first accessible:
Are the properties of periods in Laver tables an application of set theory?

- So far, yes;
- In the future, formally no if one finds alternative proofs that do not use large cardinals.

- But, in any case, it is set theory that made the properties first accessible: even if one does not believe that large cardinals exist, they can provide valuable intuitions and simple arguments.
• Are the properties of periods in Laver tables an application of set theory?
  - So far, yes;
  - In the future, formally no if one finds alternative proofs that do not use large cardinals.
  - But, in any case, it is set theory that made the properties first accessible:
    even if one does not believe that large cardinals exist, they can provide valuable intuitions and simple arguments.

• An analogy:
• Are the properties of periods in Laver tables an application of set theory?
  - So far, yes;
  - In the future, formally no if one finds alternative proofs that do not use large cardinals.
  - But, in any case, it is set theory that made the properties first accessible: even if one does not believe that large cardinals exist, they can provide valuable intuitions and simple arguments.

• An analogy:
  - In physics: using a physical intuition,
- Are the properties of periods in Laver tables an application of set theory?
  - So far, yes;
  - In the future, formally no if one finds alternative proofs that do not use large cardinals.
  - But, in any case, it is set theory that made the properties first accessible: even if one does not believe that large cardinals exist, they can provide valuable intuitions and simple arguments.

- An analogy:
  - In physics: using a physical intuition, guess statements,
The role of set theory

- Are the properties of periods in Laver tables an application of set theory?
  - So far, yes;
  - In the future, formally no if one finds alternative proofs that do not use large cardinals.
  - But, in any case, it is set theory that made the properties first accessible: even if one does not believe that large cardinals exist, they can provide valuable intuitions and simple arguments.

- An analogy:
  - In physics: using a physical intuition, guess statements, then pass them to the mathematician for a formal proof.
The role of set theory

- Are the properties of periods in Laver tables an application of set theory?
  - So far, yes;
  - In the future, formally no if one finds alternative proofs that do not use large cardinals.
  - But, in any case, it is set theory that made the properties first accessible: even if one does not believe that large cardinals exist, they can provide valuable intuitions and simple arguments.

- An analogy:
  - In physics: using a physical intuition, guess statements, then pass them to the mathematician for a formal proof.
  - Here: using a logical intuition
Are the properties of periods in Laver tables an application of set theory?
- So far, yes;
- In the future, formally no if one finds alternative proofs that do not use large cardinals.
- But, in any case, it is set theory that made the properties first accessible: even if one does not believe that large cardinals exist, they can provide valuable intuitions and simple arguments.

An analogy:
- In physics: using a physical intuition, guess statements, then pass them to the mathematician for a formal proof.
- Here: using a logical intuition (existence of a selfsimilar set),
The role of set theory

- Are the properties of periods in Laver tables an application of set theory?
  - So far, yes;
  - In the future, formally no if one finds alternative proofs that do not use large cardinals.
  - But, in any case, it is set theory that made the properties first accessible: even if one does not believe that large cardinals exist, they can provide valuable intuitions and simple arguments.

- An analogy:
  - In physics: using a physical intuition, guess statements, then pass them to the mathematician for a formal proof.
  - Here: using a logical intuition (existence of a selfsimilar set), guess statements
• Are the properties of periods in Laver tables an application of set theory?
  - So far, yes;
  - In the future, formally no if one finds alternative proofs that do not use large cardinals.
  - But, in any case, it is set theory that made the properties first accessible: even if one does not believe that large cardinals exist, they can provide valuable intuitions and simple arguments.

• An analogy:
  - In physics: using a physical intuition, guess statements, then pass them to the mathematician for a formal proof.
  - Here: using a logical intuition (existence of a selfsimilar set), guess statements (periods tend to $\infty$ in Laver tables),
• Are the properties of periods in Laver tables an application of set theory?
  - So far, yes;
  - In the future, formally no if one finds alternative proofs that do not use large cardinals.
  - But, in any case, it is set theory that made the properties first accessible: even if one does not believe that large cardinals exist, they can provide valuable intuitions and simple arguments.

• An analogy:
  - In physics: using a physical intuition, guess statements, then pass them to the mathematician for a formal proof.
  - Here: using a logical intuition (existence of a selfsimilar set), guess statements (periods tend to $\infty$ in Laver tables), then pass them to the mathematician for a formal proof.
Richard Laver
(1942-2012)
• R. Laver, *On the algebra of elementary embeddings of a rank into itself,*

• P. Dehornoy, *Braids and self-distributivity,*
  Progress in math. vol 192, Birkhaüser (1999), chapters X and XIII

• **P. Dehornoy**, Braids and self-distributivity, Progress in math. vol 192, Birkhäuser (1999), chapters X and XIII


www.math.unicaen.fr/~dehornoy