Braid combinatorics, permutations, and noncrossing partitions
Braid combinatorics, permutations, and noncrossing partitions

Patrick Dehornoy

Laboratoire de Mathématiques
Nicolas Oresme, Université de Caen
Braid combinatorics, permutations, and noncrossing partitions

Patrick Dehornoy

Laboratoire de Mathématiques
Nicolas Oresme, Université de Caen

- A few combinatorial questions involving braids and their Garside structures:
A few combinatorial questions involving braids and their Garside structures: the classical Garside structure, connected with permutations,
A few combinatorial questions involving braids and their Garside structures:
 the classical Garside structure, connected with permutations,
 the dual Garside structure, connected with noncrossing partitions.
Plan:
• Plan:

 1. Braid combinatorics: Artin generators
Plan:

1. Braid combinatorics: Artin generators
2. Braid combinatorics: Garside generators
• Plan:
 1. Braid combinatorics: Artin generators
 2. Braid combinatorics: Garside generators
- Plan:
 1. Braid combinatorics: Artin generators
 2. Braid combinatorics: Garside generators
Plan:

1. Braid combinatorics: Artin generators
2. Braid combinatorics: Garside generators
• a 4-strand braid diagram
• a 4-strand braid diagram
• a 4-strand braid diagram = 2D-projection of a 3D-figure:
• a 4-strand braid diagram = 2D-projection of a 3D-figure:
• a 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:
• a 4-strand braid diagram

= 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:
• a 4-strand braid diagram

= 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:

isotopic to
• a 4-strand braid diagram

= 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:

isotopic to
• a 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:

isotopic to
- a 4-strand braid diagram = 2D-projection of a 3D-figure:

- isotopy = move the strands but keep the ends fixed:
• a 4-strand braid diagram

= 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:

isotopic to
• a 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:

isotopic to
- a 4-strand braid diagram = 2D-projection of a 3D-figure:

- isotopy = move the strands but keep the ends fixed:

 isotopic to
• a 4-strand braid diagram = 2D-projection of a 3D-figure:

- isotopy = move the strands but keep the ends fixed:

 isotopic to
• a 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:
• a 4-strand **braid diagram**

\[= \text{2D-projection of a 3D-figure:}\]

\[\text{←←←} \quad \text{isotopy} = \text{move the strands but keep the ends fixed:} \]

\[\text{isotopic to} \quad \text{isotopic to}\]
• a 4-strand braid diagram = 2D-projection of a 3D-figure:

\[\text{isotopy} = \text{move the strands but keep the ends fixed:} \]

\[\text{isotopic to} \]
• a 4-strand braid diagram

= 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:
• a 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:

isotopic to
- a 4-strand braid diagram = 2D-projection of a 3D-figure:

- isotopy = move the strands but keep the ends fixed:

- a braid := an isotopy class represented by 2D-diagram,
• a 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:

• a braid := an isotopy class represented by 2D-diagram, but different 2D-diagrams may give rise to the same braid.
• Product of two braids:
- **Product** of two braids:
• **Product** of two braids:
• **Product** of two braids:

```
  \begin{array}{ccc}
  \vdots & \vdots & \vdots \\
  \vdots & \vdots & \vdots \\
  \vdots & \vdots & \vdots \\
  \end{array} \quad \star \quad \begin{array}{ccc}
  \vdots & \vdots & \vdots \\
  \vdots & \vdots & \vdots \\
  \vdots & \vdots & \vdots \\
  \end{array} \quad := \quad \begin{array}{ccc}
  \vdots & \vdots & \vdots \\
  \vdots & \vdots & \vdots \\
  \vdots & \vdots & \vdots \\
  \end{array}
```

• Then well-defined \textit{(with respect to isotopy)}, associative, admits a unit:

```
  \begin{array}{ccc}
  \vdots & \vdots & \vdots \\
  \vdots & \vdots & \vdots \\
  \vdots & \vdots & \vdots \\
  \end{array} \quad \star \quad \begin{array}{ccc}
  \vdots & \vdots & \vdots \\
  \vdots & \vdots & \vdots \\
  \vdots & \vdots & \vdots \\
  \end{array} \quad = \quad \begin{array}{ccc}
  \vdots & \vdots & \vdots \\
  \vdots & \vdots & \vdots \\
  \vdots & \vdots & \vdots \\
  \end{array}
```
• **Product** of two braids:

![Diagram of two braids being multiplied](image)

• Then well-defined *(with respect to isotopy)*, associative, admits a unit:

![Diagram of a braid being multiplied by the unit](image)
• **Product** of two braids:

\[\star \quad := \]

• Then well-defined (with respect to isotopy), associative, admits a unit:

\[\star \quad = \quad \simeq \]
- **Product** of two braids:

\[\begin{array}{ccc}
\text{Braid 1} & \times & \text{Braid 2} \\
\text{Definition} & : & \text{Result}
\end{array} \]

- Then well-defined (with respect to isotopy), associative, admits a unit:

\[\begin{array}{ccc}
\text{Braid 1} & \times & \text{Braid 2} \\
\text{Result} & : & \text{Isotopic to}
\end{array} \]
- **Product** of two braids:

 ![Product of two braids](image)

 - Then well-defined *(with respect to isotopy)*, associative, admits a unit:

 ![Well-defined, associative, unit](image)

 and inverses:

 ![Inverses](image)

 `braid`
• **Product** of two braids:

\[
\begin{array}{c}
\text{blue braid} \\
\otimes \\
\text{orange braid} \\
\text{blue braid}
\end{array}
\]

Then well-defined (with respect to isotopy), associative, admits a unit:

\[
\begin{array}{c}
\text{blue braid} \\
\otimes \\
\text{braid} \\
\text{blue braid}
\end{array}
\]

and inverses:

\[
\begin{array}{c}
\text{blue braid} \\
\otimes \\
\text{braid} \\
\text{blue braid}
\end{array}
\]

isotopic to
• **Product** of two braids:

\[\begin{array}{ccc}
\text{blue braid} & \ast & \text{orange braid} \\
\text{blue braid} & = & \text{orange braid}
\end{array} \]

Then well-defined *(with respect to isotopy)*, associative, admits a unit:

\[\begin{array}{ccc}
\text{blue braid} & \ast & \text{blue braid} \\
\text{blue braid} & = & \text{blue braid}
\end{array} \approx \text{blue braid} \uparrow \text{isolotopic to}

and inverses:
• **Product** of two braids:

\[
\begin{align*}
\text{blue braid} \ast \text{orange braid} & := \text{blue braid} \\
\end{align*}
\]

• Then well-defined (with respect to isotopy), associative, admits a unit:

\[
\begin{align*}
\text{blue braid} \ast \text{blue braid} & = \text{blue braid} & & \text{isotopic to} \\
\end{align*}
\]

and inverses:

\[
\begin{align*}
\text{blue braid} \ast \text{blue braid} & = \text{blue braid} \\
\end{align*}
\]
- **Product** of two braids:

 \[
 \begin{array}{c}
 \text{Product} \\
 \end{array}
 \hspace{1cm}
 \begin{array}{c}
 \text{Product} \\
 \end{array}
 \hspace{1cm}
 \begin{array}{c}
 \text{Product} \\
 \end{array}
 \]

- Then well-defined (with respect to isotopy), associative, admits a unit:

 \[
 \begin{array}{c}
 \text{Product} \\
 \end{array}
 \hspace{1cm}
 \begin{array}{c}
 \text{Product} \\
 \end{array}
 \hspace{1cm}
 \begin{array}{c}
 \text{Product} \\
 \end{array}
 \]

- and inverses:

 \[
 \begin{array}{c}
 \text{Product} \\
 \end{array}
 \hspace{1cm}
 \begin{array}{c}
 \text{Product} \\
 \end{array}
 \hspace{1cm}
 \begin{array}{c}
 \text{Product} \\
 \end{array}
 \]
- **Product** of two braids:

\[
\begin{array}{c}
\text{braid} \\
\times \\
\text{braid} \\
\end{array} := \begin{array}{c}
\text{braid} \\
\text{braid} \\
\end{array}
\]

- Then well-defined (with respect to isotopy), associative, admits a unit:

\[
\begin{array}{c}
\text{braid} \\
\times \\
\text{braid} \\
\end{array} \approx \begin{array}{c}
\text{braid} \\
\text{braid} \\
\end{array}
\]

and inverses:

\[
\begin{array}{c}
\text{braid} \\
\times \\
\text{braid} \\
\end{array} \approx \begin{array}{c}
\text{braid} \\
\text{braid} \\
\end{array}
\]

- For each \(n \), the group \(B_n \) of \(n \)-strand braids (E. Artin, 1925).
• Artin generators of B_n:

[Diagram of Artin generators]
• Artin generators of B_n:
Artin presentation of B_n

- Artin generators of B_n:
• Artin generators of B_n:

\begin{align*}
\text{Diagram 1} & = \text{Diagram 2} \\
\end{align*}
Artin presentation of B_n:

- Artin generators of B_n:

\[\sigma_1 \]
• Artin generators of B_n:
• Artin generators of B_n:

\[\sigma_1 \quad \sigma_2 \quad \sigma_3 \]
• Artin generators of B_n:
• Artin generators of B_n:

\[
\sigma_1 \sigma_2 \sigma_3 \sigma_1^{-1}
\]

• **Theorem (Artin).**— The group B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$,
- Artin generators of B_n:

\[
\sigma_1 \quad \sigma_2 \quad \sigma_3 \quad \sigma_1^{-1}
\]

- **Theorem (Artin).**— The group B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$, subject to

\[
\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \quad \text{for } |i - j| = 1,
\]
• Artin generators of B_n:

\[
\begin{array}{c}
\sigma_1 \sigma_2 \sigma_3 \sigma_1^{-1} \\
= \\
\begin{array}{cccc}
\sigma_1 & \sigma_2 & \sigma_3 & \sigma_1^{-1}
\end{array}
\end{array}
\]

• **Theorem (Artin).**— The group B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$, subject to

\[
\begin{align*}
\sigma_i \sigma_j \sigma_i &= \sigma_j \sigma_i \sigma_j & \text{for } |i - j| = 1, \\
\sigma_i \sigma_j &= \sigma_j \sigma_i & \text{for } |i - j| \geq 2.
\end{align*}
\]
Artin presentation of B_n:

- Artin generators of B_n:

\[
\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2
\]

- Theorem (Artin).— The group B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$, subject to

\[
\begin{align*}
\sigma_i \sigma_j \sigma_i &= \sigma_j \sigma_i \sigma_j & \text{for } |i - j| = 1, \\
\sigma_i \sigma_j &= \sigma_j \sigma_i & \text{for } |i - j| \geq 2.
\end{align*}
\]
Artin presentation of B_n

- Artin generators of B_n:

$$\sigma_1 \sigma_2 \sigma_1 \approx \sigma_2 \sigma_1 \sigma_2$$

- Theorem (Artin).— The group B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$, subject to

$$\begin{cases}
\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{for } |i - j| = 1, \\
\sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i - j| \geq 2.
\end{cases}$$
• For $n \geq 2$, the group B_n is infinite ➔ consider finite subsets.
• For \(n \geq 2 \), the group \(B_n \) is infinite ★ consider finite subsets.

• \(B_n^+ := \) monoid of classes of \(n \)-strand positive diagrams
• For $n \geq 2$, the group B_n is infinite ➤ consider finite subsets.

• $B^+_n :=$ monoid of classes of n-strand positive diagrams

 all crossings have a positive orientation
• For $n \geq 2$, the group B_n is infinite ✔ consider finite subsets.

• $B_n^+:=$ monoid of classes of n-strand positive diagrams
 all crossings have a positive orientation

• Theorem (Garside, 1967).— As a monoid, B_n^+ admits the presentation... (as B_n);
 it is cancellative, and admits lcms and gcds.
• For $n \geq 2$, the group B_n is infinite. Consider finite subsets.

• $B_n^+ :=$ monoid of classes of n-strand positive diagrams

 all crossings have a positive orientation

• **Theorem (Garside, 1967).**— As a monoid, B_n^+ admits the presentation... (as B_n); it is cancellative, and admits lcms and gcds.

• Hence: Equivalent positive braid words have the same length,
• For $n \geq 2$, the group B_n is infinite \(\Rightarrow\) consider finite subsets.

• $B_n^+ :=$ monoid of classes of n-strand positive diagrams
 all crossings have a positive orientation

• **Theorem (Garside, 1967).** — As a monoid, B_n^+ admits the presentation... (as B_n); it is cancellative, and admits lcms and gcds.

• Hence: Equivalent positive braid words have the same length,
 \(\Rightarrow\) every positive braid β has a well-defined length $\|\beta\|^\text{Art}$ w.r.t. Artin generators σ_i.
• For $n \geq 2$, the group B_n is infinite ➤ consider finite subsets.

• $B_n^+:=$ monoid of classes of n-strand positive diagrams

 all crossings have a positive orientation

• **Theorem (Garside, 1967).**— As a monoid, B_n^+ admits the presentation... (as B_n); it is cancellative, and admits lcms and gcds.

• Hence: Equivalent positive braid words have the same length,
 ➤ every positive braid β has a well-defined length $\|\beta\|^\text{Art}$ w.r.t. Artin generators σ_i.

• **Question:** Determine $N_{n,\ell}^{\text{Art}+} := \#\{\beta \in B_n^+ \mid \|\beta\|^\text{Art} = \ell\}$
• For \(n \geq 2 \), the group \(B_n \) is infinite \(\implies \) consider finite subsets.

\[B^+_{\infty} := \text{monoid of classes of } n\text{-strand positive diagrams} \]
\[\text{all crossings have a positive orientation} \]

\[\text{Theorem (Garside, 1967).— As a monoid, } B^+_{\infty} \text{ admits the presentation... (as } B_n) ; \]
\[\text{it is cancellative, and admits lcms and gcds.} \]

• Hence: Equivalent positive braid words have the same length,
\[\implies \text{every positive braid } \beta \text{ has a well-defined length } || \beta ||^{\text{Art}} \text{ w.r.t. Artin generators } \sigma_i. \]

• Question: Determine \(N^{\text{Art} +}_{n, \ell} := \# \{ \beta \in B^+_{\infty} \mid || \beta ||^{\text{Art}} = \ell \} \)
\[\text{and/or the associated generating series.} \]
Theorem (Deligne, 1972).— For every n, the g.f. of $N_{n,\ell}^{\text{Art}+}$ is rational.

Proof: For β in B_n^+, define $M(\beta) := \{\beta \gamma \mid \gamma \in B_n^+\} = $ right-multiples of β.
• **Theorem (Deligne, 1972).**— For every \(n \), the g.f. of \(N^{\text{Art}+}_{n, \ell} \) is rational.

• Proof: For \(\beta \) in \(B^+_n \), define \(M(\beta) := \{ \beta \gamma | \gamma \in B^+_n \} = \text{right-multiples of } \beta \).

 ▶ Then \(B^+_n \setminus \{1\} = \bigcup_i M(\sigma_i) \), and
Theorem (Deligne, 1972).— For every n, the g.f. of $N^{Art+}_{n,\ell}$ is rational.

Proof: For β in B^+_n, define $M(\beta) := \{\beta \gamma \mid \gamma \in B^+_n\} = \text{right-multiples of } \beta$. Then $B^+_n \setminus \{1\} = \bigcup_i M(\sigma_i)$, and $M(\sigma_i) \cap M(\sigma_j) = M(\text{lcm}(\sigma_i, \sigma_j))$.
• **Theorem (Deligne, 1972).**— For every n, the g.f. of $N_{n,\ell}^{\text{Art}+}$ is rational.

• **Proof:** For β in B_n^+, define $M(\beta) := \{ \beta \gamma \mid \gamma \in B_n^+ \} =$ right-multiples of β.

 ▶ Then $B_n^+ \setminus \{1\} = \bigcup_i M(\sigma_i)$, and $M(\sigma_i) \cap M(\sigma_j) = M(\text{lcm}(\sigma_i, \sigma_j))$.

 ▶ By inclusion–exclusion, get induction $N_{n,\ell}^{\text{Art}+} = c_1 N_{n,\ell-1}^{\text{Art}+} + \cdots + c_K N_{n,\ell-K}^{\text{Art}+}$. \square
• **Theorem (Deligne, 1972).**— For every n, the g.f. of $N_{n,\ell}^{\text{Art}+}$ is rational.

• Proof: For β in B^+_n, define $M(\beta):=\{\beta \gamma \mid \gamma \in B^+_n\} = \text{right-multiples of } \beta$.

 ▶ Then $B^+_n \setminus \{1\} = \bigcup_i M(\sigma_i)$, and $M(\sigma_i) \cap M(\sigma_j) = M(\text{lcm}(\sigma_i, \sigma_j))$.

 ▶ By inclusion–exclusion, get induction $N_{n,\ell}^{\text{Art}+} = c_1 N_{n,\ell-1}^{\text{Art}+} + \cdots + c_K N_{n,\ell-K}^{\text{Art}+}$. □

• More precisely: for every n, the generating series of $N_{n,\ell}^{\text{Art}+}$ is the inverse of a polynomial $P_n(t)$.
Theorem (Deligne, 1972).— For every n, the g.f. of $N_{n,\ell}^{\text{Art}+}$ is rational.

Proof: For β in B_n^+, define $M(\beta) := \{ \beta \gamma \mid \gamma \in B_n^+ \} =$ right-multiples of β.

- Then $B_n^+ \setminus \{1\} = \bigcup_i M(\sigma_i)$, and $M(\sigma_i) \cap M(\sigma_j) = M(\text{lcm}(\sigma_i, \sigma_j))$.
- By inclusion–exclusion, get induction $N_{n,\ell}^{\text{Art}+} = c_1 N_{n,\ell-1}^{\text{Art}+} + \cdots + c_K N_{n,\ell-K}^{\text{Art}+}$. □

More precisely: for every n, the generating series of $N_{n,\ell}^{\text{Art}+}$ is the inverse of a polynomial $P_n(t)$.

Proposition (Bronfman, 2001).— Starting from $P_0(t) = P_1(t) = 1$, one has

$$P_n(t) = \sum_{i=1}^n (-1)^{i+1} t^{i(i-1)/2} P_{n-i}(t).$$
• **Theorem (Deligne, 1972).**— For every \(n \), the g.f. of \(N_{n, \ell}^{\text{Art}+} \) is rational.

Proof: For \(\beta \) in \(B_n^+ \), define \(M(\beta) := \{ \beta \gamma \mid \gamma \in B_n^+ \} = \text{right-multiples of } \beta \).
- Then \(B_n^+ \setminus \{1\} = \bigcup_i M(\sigma_i) \), and \(M(\sigma_i) \cap M(\sigma_j) = M(\text{lcm}(\sigma_i, \sigma_j)) \).
- By inclusion–exclusion, get induction \(N_{n, \ell}^{\text{Art}+} = c_1 N_{n, \ell-1}^{\text{Art}+} + \cdots + c_K N_{n, \ell-K}^{\text{Art}+} \).

More precisely: for every \(n \), the generating series of \(N_{n, \ell}^{\text{Art}+} \) is the inverse of a polynomial \(P_n(t) \).

Proposition (Bronfman, 2001).— Starting from \(P_0(t) = P_1(t) = 1 \), one has

\[
P_n(t) = \sum_{i=1}^{n} (-1)^{i+1} t^{i(i-1)/2} P_{n-i}(t).
\]
• Same question for B_n instead of B_n^+;
• Same question for B_n instead of B_n^+; all representatives don't have the same length
• Same question for B_n instead of B_n^+; all representatives don't have the same length.
 ▶ define $\|\beta\|^{\text{Art}} :=$ the minimal length of a word representing β.
• Same question for B_n instead of B_n^+; all representatives don't have the same length
 ◮ define $\|\beta\|^{\text{Art}} :=$ the minimal length of a word representing β.

• **Question:** Determine $N_{n,\ell}^{\text{Art}} := \#\{\beta \in B_n \mid \|\beta\|^{\text{Art}} = \ell\}$
 and/or determine the associated generating series.
- Same question for B_n instead of B^+_n; all representatives don’t have the same length
 - define $\|\beta\|^{Art} :=$ the minimal length of a word representing β.

- **Question:** Determine $N_{n,\ell}^{Art} := \#\{\beta \in B_n \mid \|\beta\|^{Art} = \ell\}$ and/or determine the associated generating series.

- **Proposition (Mairesse–Matheus, 2005).** The generating series of $N_{3,\ell}^{Art}$ is

 $$1 + \frac{2t(2 - 2t - t^2)}{(1-t)(1-2t)(1-t-t^2)}. $$
• Same question for B_n instead of B_n^+; all representatives don’t have the same length
 ▶ define $\|\beta\|^{\text{Art}} :=$ the minimal length of a word representing β.

• **Question:** Determine $N_{n,\ell}^{\text{Art}} := \#\{\beta \in B_n \mid \|\beta\|^{\text{Art}} = \ell\}$
 and/or determine the associated generating series.

• **Proposition (Mairesse–Matheus, 2005).**— The generating series of $N_{3,\ell}^{\text{Art}}$ is
 $$1 + \frac{2t(2 - 2t - t^2)}{(1 - t)(1 - 2t)(1 - t - t^2)}.$$

• Then open, even $N_{4,\ell}^{\text{Art}}$:
• Same question for B_n instead of B_n^+; all representatives don’t have the same length
 ▶ define $\|\beta\|^{Art} :=$ the minimal length of a word representing β.

• **Question:** Determine $N_{n,\ell}^{Art} := \#\{\beta \in B_n \mid \|\beta\|^{Art} = \ell\}$
 and/or determine the associated generating series.

Proposition (Mairesse–Matheus, 2005).— The generating series of $N_{3,\ell}^{Art}$ is

$$1 + \frac{2t(2 - 2t - t^2)}{(1 - t)(1 - 2t)(1 - t - t^2)}.$$

• Then open, even $N_{4,\ell}^{Art}$: (Mairesse) no rational fraction with degree ≤ 13 denominator.
• Same question for B_n instead of B_n^+; all representatives don’t have the same length

 ► define $\|\beta\|^{Art} :=$ the minimal length of a word representing β.

• Question: Determine $N_{n,\ell}^{Art} := \#\{\beta \in B_n \mid \|\beta\|^{Art} = \ell\}$ and/or determine the associated generating series.

• Proposition (Mairesse–Matheus, 2005).— The generating series of $N_{3,\ell}^{Art}$ is

$$1 + \frac{2t(2 - 2t - t^2)}{(1 - t)(1 - 2t)(1 - t - t^2)}.$$

• Then open, even $N_{4,\ell}^{Art}$: (Mairesse) no rational fraction with degree ≤ 13 denominator.

• “Explanation”: Artin generators are not the right generators...
• Same question for B_n instead of B_n^+; all representatives don't have the same length
 ▶ define $\|\beta\|^{\text{Art}} :=$ the minimal length of a word representing β.

• **Question**: Determine $N_{n,\ell}^{\text{Art}} := \#\{\beta \in B_n \mid \|\beta\|^{\text{Art}} = \ell\}$
 and/or determine the associated generating series.

• **Proposition** (Mairesse–Matheus, 2005).— The generating series of $N_{3,\ell}^{\text{Art}}$ is
 $$1 + \frac{2t(2 - 2t - t^2)}{(1 - t)(1 - 2t)(1 - t - t^2)}.$$

• Then open, even $N_{4,\ell}^{\text{Art}}$: (Mairesse) no rational fraction with degree ≤ 13 denominator.

• “Explanation”: Artin generators are not the right generators...
 ▶ change generators
Plan:

1. Braid combinatorics: Artin generators
2. Braid combinatorics: Garside generators
• **Definition:** A Garside structure in a group G is a subset S of G s.t. every element g of G admits an S-normal decomposition,
Definition: A Garside structure in a group G is a subset S of G s.t. every element g of G admits an S-normal decomposition, meaning $g = s_p^{-1} \cdots s_1^{-1} t_1 \cdots t_q$ with $s_1, \ldots, s_p, t_1, \ldots, t_q$ in S and, using “f left-divides g” for “$f^{-1}g$ lies in the submonoid \hat{S} of G generated by S”,
• **Definition:** A *Garside structure* in a group G is a subset S of G s.t. every element g of G admits an S-normal decomposition, meaning $g = s_p^{-1} \cdots s_1^{-1} t_1 \cdots t_q$ with $s_1, \ldots, s_p, t_1, \ldots, t_q$ in S and, using “f left-divides g” for “$f^{-1} g$ lies in the submonoid \hat{S} of G generated by S”,

- every element of S left-dividing $s_i s_{i+1}$ left-divides s_i,
• **Definition:** A *Garside structure* in a group G is a subset S of G s.t. every element g of G admits an *S-normal* decomposition, meaning $g = s_p^{-1} \cdots s_1^{-1} t_1 \cdots t_q$ with $s_1, \ldots, s_p, t_1, \ldots, t_q$ in S and, using “f left-divides g” for “$f^{-1}g$ lies in the submonoid \hat{S} of G generated by S”,
 ▶ every element of S left-dividing $s_i s_{i+1}$ left-divides s_i,
 ▶ every element of S left-dividing $t_i t_{i+1}$ left-divides t_i.

Definition: A Garside structure in a group G is a subset S of G s.t. every element g of G admits an S-normal decomposition, meaning $g = s_p^{-1} \cdots s_1^{-1} t_1 \cdots t_q$ with $s_1, \ldots, s_p, t_1, \ldots, t_q$ in S and, using “f left-divides g” for “$f^{-1}g$ lies in the submonoid \hat{S} of G generated by S”:

- every element of S left-dividing $s_i s_{i+1}$ left-divides s_i,
- every element of S left-dividing $t_i t_{i+1}$ left-divides t_i,
- 1 is the only element of S left-dividing s_1 and t_1.
Definition: A Garside structure in a group G is a subset S of G s.t. every element g of G admits an S-normal decomposition, meaning $g = s_1^{-1} \cdots s_p^{-1} t_1 \cdots t_q$ with $s_1, \ldots, s_p, t_1, \ldots, t_q$ in S and, using "f left-divides g" for "$f^{-1}g$ lies in the submonoid \hat{S} of G generated by S",

- every element of S left-dividing s_is_{i+1} left-divides s_i,
- every element of S left-dividing t_it_{i+1} left-divides t_i,
- 1 is the only element of S left-dividing s_1 and t_1.

When it exists, an S-normal decomposition is (essentially) unique,
• **Definition:** A **Garside structure** in a group G is a subset S of G s.t. every element g of G admits an S-normal decomposition, meaning $g = s_p^{-1} \cdots s_1^{-1} t_1 \cdots t_q$ with $s_1, \ldots, s_p, t_1, \ldots, t_q$ in S and, using “f left-divides g” for “$f^{-1}g$ lies in the submonoid \hat{S} of G generated by S”,
 ▶ every element of S left-dividing $s_i s_{i+1}$ left-divides s_i,
 ▶ every element of S left-dividing $t_i t_{i+1}$ left-divides t_i,
 ▶ 1 is the only element of S left-dividing s_1 and t_1.

• When it exists, an S-normal decomposition is (essentially) unique, and geodesic.
• **Definition:** A **Garside structure** in a group G is a subset S of G s.t. every element g of G admits an S-normal decomposition, meaning $g = s_p^{-1} \cdots s_1^{-1} t_1 \cdots t_q$ with $s_1, \ldots, s_p, t_1, \ldots, t_q$ in S and, using “f left-divides g” for “$f^{-1}g$ lies in the submonoid \hat{S} of G generated by S”,
 - every element of S left-dividing $s_i s_{i+1}$ left-divides s_i,
 - every element of S left-dividing $t_i t_{i+1}$ left-divides t_i,
 - 1 is the only element of S left-dividing s_1 and t_1.

• When it exists, an S-normal decomposition is (essentially) unique, and geodesic.

• Every group is a Garside structure in itself: interesting only when S is small.
Definition: A Garside structure in a group G is a subset S of G s.t. every element g of G admits an S-normal decomposition, meaning $g = s_p^{-1} \cdots s_1^{-1} t_1 \cdots t_q$ with $s_1, \ldots, s_p, t_1, \ldots, t_q$ in S and, using “f left-divides g” for “$f^{-1}g$ lies in the submonoid \hat{S} of G generated by S”,
 - every element of S left-dividing $s_i s_{i+1}$ left-divides s_i,
 - every element of S left-dividing $t_i t_{i+1}$ left-divides t_i,
 - 1 is the only element of S left-dividing s_1 and t_1.

When it exists, an S-normal decomposition is (essentially) unique, and geodesic.

Every group is a Garside structure in itself: interesting only when S is small.

Normality is local: if S is finite, S-normal sequences make a rational language.
• **Definition:** A *Garside structure* in a group G is a subset S of G s.t. every element g of G admits an *S-normal* decomposition, meaning $g = s_p^{-1} \cdots s_1^{-1} t_1 \cdots t_q$ with $s_1, \ldots, s_p, t_1, \ldots, t_q$ in S and, using “f left-divides g” for “$f^{-1}g$ lies in the submonoid \hat{S} of G generated by S”,
 - every element of S left-dividing $s_i s_{i+1}$ left-divides s_i,
 - every element of S left-dividing $t_i t_{i+1}$ left-divides t_i,
 - 1 is the only element of S left-dividing s_1 and t_1.

• When it exists, an *S-normal* decomposition is (essentially) unique, and geodesic.

• Every group is a Garside structure in itself: interesting only when S is small.

• Normality is *local*: if S is finite, S-normal sequences make a rational language
 - automatic structure, solution of the word and conjugacy problems, ...
Definition: A **Garside structure** in a group G is a subset S of G s.t. every element g of G admits an S-normal decomposition, meaning $g = s_p^{-1} \cdots s_1^{-1} t_1 \cdots t_q$ with $s_1, ..., s_p, t_1, ..., t_q$ in S and, using “f left-divides g” for “$f^{-1}g$ lies in the submonoid \hat{S} of G generated by S”,
- every element of S left-dividing s_is_{i+1} left-divides s_i,
- every element of S left-dividing $t_i t_{i+1}$ left-divides t_i,
- 1 is the only element of S left-dividing s_1 and t_1.

- When it exists, an S-normal decomposition is (essentially) unique, and geodesic.

- Every group is a Garside structure in itself: interesting only when S is small.

- Normality is **local**: if S is finite, S-normal sequences make a rational language
 - automatic structure, solution of the word and conjugacy problems, ...
 - counting problems: $\#$ elements with S-normal decompositions of length ℓ.

Garside structure

• **Definition:** A **Garside structure** in a group G is a subset S of G s.t. every element g of G admits an S-normal decomposition, meaning $g = s_p^{-1} \cdots s_1^{-1} t_1 \cdots t_q$ with $s_1, \ldots, s_p, t_1, \ldots, t_q$ in S and, using “f left-divides g” for “$f^{-1}g$ lies in the submonoid \hat{S} of G generated by S”:
 - every element of S left-dividing $s_i s_{i+1}$ left-divides s_i,
 - every element of S left-dividing $t_i t_{i+1}$ left-divides t_i,
 - 1 is the only element of S left-dividing s_1 and t_1.

• When it exists, an S-normal decomposition is (essentially) unique, and geodesic.

• Every group is a Garside structure in itself: interesting only when S is small.

• Normality is local: if S is finite, S-normal sequences make a rational language
 - automatic structure, solution of the word and conjugacy problems, ...
 - counting problems: # elements with S-normal decompositions of length ℓ.

• **Definition:** A Garside structure S in a group G is **bounded** if there exists an element Δ ("Garside element") such that S consists of the left-divisors of Δ in \hat{S}.
Definition: A Garside structure in a group G is a subset S of G s.t. every element g of G admits an S-normal decomposition, meaning $g = s_p^{-1} \cdots s_1^{-1} t_1 \cdots t_q$ with $s_1, \ldots, s_p, t_1, \ldots, t_q$ in S and, using “f left-divides g” for “$f^{-1} g$ lies in the submonoid \hat{S} of G generated by S”,

- every element of S left-dividing $s_i s_{i+1}$ left-divides s_i,
- every element of S left-dividing $t_i t_{i+1}$ left-divides t_i,
- 1 is the only element of S left-dividing s_1 and t_1.

- When it exists, an S-normal decomposition is (essentially) unique, and geodesic.
- Every group is a Garside structure in itself: interesting only when S is small.
- Normality is local: if S is finite, S-normal sequences make a rational language
 - automatic structure, solution of the word and conjugacy problems, ...
 - counting problems: $\#$ elements with S-normal decompositions of length ℓ.

Definition: A Garside structure S in a group G is bounded if there exists an element Δ ("Garside element") such that S consists of the left-divisors of Δ in \hat{S}.

- In this case:
 - the S-normal decomposition of g in \hat{S} is recursively given by $s_1 = \gcd(g, \Delta)$;
• **Definition:** A Garside structure in a group \(G \) is a subset \(S \) of \(G \) s.t. every element \(g \) of \(G \) admits an \(S \)-normal decomposition, meaning \(g = s_p^{-1} \cdots s_1^{-1} t_1 \cdots t_q \) with \(s_1, \ldots, s_p, t_1, \ldots, t_q \) in \(S \) and, using “\(f \) left-divides \(g \)” for “\(f^{-1} g \) lies in the submonoid \(\hat{S} \) of \(G \) generated by \(S \)”,
 - every element of \(S \) left-dividing \(s_i s_{i+1} \) left-divides \(s_i \),
 - every element of \(S \) left-dividing \(t_i t_{i+1} \) left-divides \(t_i \),
 - \(1 \) is the only element of \(S \) left-dividing \(s_1 \) and \(t_1 \).

• When it exists, an \(S \)-normal decomposition is (essentially) unique, and geodesic.

• Every group is a Garside structure in itself: interesting only when \(S \) is small.

• Normality is local: if \(S \) is finite, \(S \)-normal sequences make a rational language
 - automatic structure, solution of the word and conjugacy problems, ...
 - counting problems: \(\# \) elements with \(S \)-normal decompositions of length \(\ell \).

• **Definition:** A Garside structure \(S \) in a group \(G \) is bounded if there exists an element \(\Delta \) ("Garside element") such that \(S \) consists of the left-divisors of \(\Delta \) in \(\hat{S} \).

• In this case:
 - the \(S \)-normal decomposition of \(g \) in \(\hat{S} \) is recursively given by \(s_1 = \gcd(g, \Delta) \);
 - \((s, t) \) is \(S \)-normal iff 1 is the only element of \(S \) left-dividing \(s^{-1} \Delta \) and \(t \).
• **Permutation** associated with a braid:
● **Permutation** associated with a braid:
• **Permutation** associated with a braid:

```
1 4
3
2
1
```
- **Permutation** associated with a braid:
- **Permutation** associated with a braid:
- **Permutation** associated with a braid:

```
3  4
1  3
2  2
4  1
```
- **Permutation** associated with a braid:

 \[
 \begin{array}{c}
 3 & 4 \\
 1 & 3 \\
 2 & 2 \\
 4 & 1 \\
 \end{array}
 \rightarrow (4, 2, 1, 3)
- **Permutation** associated with a braid:

 ![Braid Diagram]

 \[\rightarrow (4, 2, 1, 3) \]

- A surjective homomorphism \(\pi_n : B_n \rightarrow S_n \).
• **Permutation** associated with a braid:

\[
\begin{array}{cccc}
3 & 4 \\
1 & 3 \\
2 & 2 \\
4 & 1 \\
\end{array}
\rightarrow (4, 2, 1, 3)
\]

- A surjective homomorphism \(\pi_n : B_n \to \mathcal{S}_n \).

- **Lemma**: Call a braid **simple** if it can be represented by a positive diagram in which any two strands cross at most once. Then, for every permutation \(f \) in \(\mathcal{S}_n \), there exists exactly one simple braid \(\sigma_f \) satisfying \(\pi_n(\sigma_f) = f \).
• **Permutation** associated with a braid:

\[
\begin{array}{ccc}
3 & 4 \\
1 & 3 \\
2 & 2 \\
4 & 1 \\
\end{array}
\quad \mapsto \quad (4, 2, 1, 3)
\]

A surjective homomorphism \(\pi_n : B_n \to S_n \).

- **Lemma**: Call a braid **simple** if it can be represented by a positive diagram in which any two strands cross at most once. Then, for every permutation \(f \) in \(S_n \), there exists exactly one simple braid \(\sigma_f \) satisfying \(\pi_n(\sigma_f) = f \).
• **Permutation** associated with a braid:

```
\[
\begin{array}{ccc}
3 & 4 \\
1 & 3 \\
2 & 2 \\
4 & 1 \\
\end{array}
\mapsto (4, 2, 1, 3)
\]
```

A surjective homomorphism \(\pi_n : B_n \to \mathfrak{S}_n \).

• **Lemma**: Call a braid **simple** if it can be represented by a positive diagram in which any two strands cross at most once. Then, for every permutation \(f \) in \(\mathfrak{S}_n \), there exists exactly one simple braid \(\sigma_f \) satisfying \(\pi_n(\sigma_f) = f \).

```
\[
\begin{array}{ccc}
3 & 4 \\
1 & 3 \\
2 & 2 \\
4 & 1 \\
\end{array}
\mapsto (4, 2, 1, 3)
\]
• **Permutation** associated with a braid:

```
3 4
1 3
2 2
4 1
```

\[ \mapsto (4, 2, 1, 3) \]

- A surjective homomorphism \( \pi_n : B_n \to \mathcal{S}_n \).

• **Lemma:** Call a braid **simple** if it can be represented by a positive diagram in which any two strands cross at most once. Then, for every permutation \( f \) in \( \mathcal{S}_n \), there exists exactly one simple braid \( \sigma_f \) satisfying \( \pi_n(\sigma_f) = f \).

\[(4, 2, 1, 3) \mapsto \]

```
3 4
1 3
2 2
4 1
```

\[ \mapsto \]
- **Permutation** associated with a braid:

  
  \[
  \begin{array}{ccc}
  3 & 4 \\
  1 & 3 \\
  2 & 2 \\
  4 & 1 \\
  \end{array}
  \quad \mapsto \quad (4, 2, 1, 3)
  \]

  ▶ A surjective homomorphism \( \pi_n : B_n \to S_n \).

- **Lemma**: Call a braid **simple** if it can be represented by a positive diagram in which any two strands cross at most once. Then, for every permutation \( f \) in \( S_n \), there exists exactly one simple braid \( \sigma_f \) satisfying \( \pi_n(\sigma_f) = f \).

  \[
  \begin{array}{ccc}
  3 & 4 \\
  1 & 3 \\
  2 & 2 \\
  4 & 1 \\
  \end{array}
  \quad \mapsto \quad (4, 2, 1, 3)
  \]

  ▶ The family \( S_n \) of all simple \( n \)-strand braids is a copy of \( S_n \).
• Theorem (Garside, Adjan, Morton–ElRifai, Thurston).— For each $n$, the family $S_n$ is a Garside structure in $B_n$. 
Theorem (Garside, Adjan, Morton–ElRifai, Thurston).— For each $n$, the family $S_n$ is a Garside structure in $B_n$, bounded by $\sigma_{(n,\ldots,1)}$. 
Theorem (Garside, Adjan, Morton–ElRifai, Thurston).— For each $n$, the family $S_n$ is a Garside structure in $B_n$, bounded by $\sigma_{(n,\ldots,1)}$; the associated monoid is $B_n^+$. 
Theorem (Garside, Adjan, Morton–ElRifai, Thurston).— For each \( n \), the family \( S_n \) is a Garside structure in \( B_n \), bounded by \( \sigma_{(n,\ldots,1)} \); the associated monoid is \( B_n^+ \).

"Garside's fundamental braid" \( \Delta_n := \sigma_{(n,\ldots,1)} \).
• **Theorem** (Garside, Adjan, Morton–ElRifai, Thurston).— For each $n$, the family $S_n$ is a Garside structure in $B_n$, bounded by $\sigma_{(n,\ldots,1)}$; the associated monoid is $B_n^+$. 

• “Garside’s fundamental braid” $\Delta_n := \sigma_{(n,\ldots,1)}$, whence $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \ldots \sigma_2 \sigma_1$: 
Theorem (Garside, Adjan, Morton–ElRifai, Thurston).— For each $n$, the family $S_n$ is a Garside structure in $B_n$, bounded by $\sigma_{(n,\ldots,1)}$; the associated monoid is $B_n^+$. 

“Garside’s fundamental braid” $\Delta_n := \sigma_{(n,\ldots,1)}$, whence $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$: 

$\Delta_1 = 1, \quad \Delta_2 = \sigma_1$,
• **Theorem (Garside, Adjan, Morton–ElRifai, Thurston).—** For each \( n \), the family \( S_n \) is a Garside structure in \( B_n \), bounded by \( \sigma_{(n,\ldots,1)} \); the associated monoid is \( B_n^+ \).

• “Garside’s fundamental braid” \( \Delta_n := \sigma_{(n,\ldots,1)} \), whence \( \Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \ldots \sigma_2 \sigma_1 \):
  \[
  \Delta_1 = 1, \quad \Delta_2 = \sigma_1, \quad \Delta_2 = \sigma_1 \sigma_2 \sigma_1, \quad \text{etc.}
  \]
• **Theorem** (Garside, Adjan, Morton–ElRifai, Thurston).— For each $n$, the family $S_n$ is a Garside structure in $B_n$, bounded by $\sigma_{(n,\ldots,1)}$; the associated monoid is $B_n^+$.  

• “Garside’s **fundamental braid**” $\Delta_n := \sigma_{(n,\ldots,1)}$, whence $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \ldots \sigma_2 \sigma_1$:  
  $\Delta_1 = 1$, $\Delta_2 = \sigma_1$, $\Delta_2 = \sigma_1 \sigma_2 \sigma_1$, etc.
• **Theorem** (Garside, Adjan, Morton–ElRifai, Thurston).— For each $n$, the family $S_n$ is a Garside structure in $B_n$, bounded by $\sigma_{(n,\ldots,1)}$; the associated monoid is $B_n^+$.

• “Garside’s fundamental braid” $\Delta_n := \sigma_{(n,\ldots,1)}$, whence $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \ldots \sigma_2 \sigma_1$:
  \[
  \Delta_1 = 1, \quad \Delta_2 = \sigma_1, \quad \Delta_2 = \sigma_1 \sigma_2 \sigma_1, \quad \text{etc.}
  \]
Theorem (Garside, Adjan, Morton–ElRifai, Thurston).— For each \( n \), the family \( S_n \) is a Garside structure in \( B_n \), bounded by \( \sigma_{(n,\ldots,1)} \); the associated monoid is \( B_n^+ \).

“Garside’s fundamental braid” \( \Delta_n := \sigma_{(n,\ldots,1)} \), whence \( \Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1 \):

\[
\begin{align*}
\Delta_1 &= 1, \\
\Delta_2 &= \sigma_1, \\
\Delta_2 &= \sigma_1 \sigma_2 \sigma_1, & \text{etc.}
\end{align*}
\]
• Theorem (Garside, Adjan, Morton–ElRifai, Thurston).— For each $n$, the family $S_n$ is a Garside structure in $B_n$, bounded by $\sigma_{(n,\ldots,1)}$; the associated monoid is $B_n^+$. 

• “Garside’s fundamental braid” $\Delta_n := \sigma_{(n,\ldots,1)}$, whence $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \ldots \sigma_2 \sigma_1$: $\Delta_1 = 1$, $\Delta_2 = \sigma_1$, $\Delta_2 = \sigma_1 \sigma_2 \sigma_1$, etc.
• **Theorem (Garside, Adjan, Morton–ElRifai, Thurston).**— For each $n$, the family $S_n$ is a Garside structure in $B_n$, bounded by $\sigma_{(n,\ldots,1)}$; the associated monoid is $B_n^+$. 

[Diagram of braids]

• "Garside’s fundamental braid" $\Delta_n := \sigma_{(n,\ldots,1)}$, whence $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$: $\Delta_1 = 1$, $\Delta_2 = \sigma_1$, $\Delta_2 = \sigma_1 \sigma_2 \sigma_1$, etc.
**Theorem** (Garside, Adjan, Morton–ElRifai, Thurston).— For each $n$, the family $S_n$ is a Garside structure in $B_n$, bounded by $\sigma_{(n,\ldots,1)}$; the associated monoid is $B_n^+$. 

“Garside’s fundamental braid” $\Delta_n := \sigma_{(n,\ldots,1)}$, whence $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$:

$\Delta_1 = 1$, $\Delta_2 = \sigma_1$, $\Delta_3 = \sigma_1 \sigma_2 \sigma_1$, etc.
• **Theorem (Garside, Adjan, Morton–ElRifai, Thurston).**— For each $n$, the family $S_n$ is a Garside structure in $B_n$, bounded by $\sigma_{(n,\ldots,1)}$; the associated monoid is $B_n^+$. 

• “Garside’s fundamental braid” $\Delta_n := \sigma_{(n,\ldots,1)}$, whence $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$:

\[
\begin{align*}
\Delta_1 &= 1, \\
\Delta_2 &= \sigma_1, \\
\Delta_2 &= \sigma_1 \sigma_2 \sigma_1,
\end{align*}
\]

etc.
Theorem (Garside, Adjan, Morton–ElRifai, Thurston).— For each $n$, the family $S_n$ is a Garside structure in $B_n$, bounded by $\sigma_{(n,\ldots,1)}$; the associated monoid is $B_n^+$. 

“Garside’s fundamental braid” $\Delta_n := \sigma_{(n,\ldots,1)}$, whence $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \ldots \sigma_2 \sigma_1$:

- $\Delta_1 = 1$,
- $\Delta_2 = \sigma_1$,
- $\Delta_2 = \sigma_1 \sigma_2 \sigma_1$,
- etc.
• **Theorem** (Garside, Adjan, Morton–ElRifai, Thurston).— For each $n$, the family $S_n$ is a Garside structure in $B_n$, bounded by $\sigma_{(n,\ldots,1)}$; the associated monoid is $B_n^+$. 

• “Garside’s fundamental braid” $\Delta_n := \sigma_{(n,\ldots,1)}$, whence $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$:

\[
\begin{align*}
\Delta_1 &= 1, \\
\Delta_2 &= \sigma_1, \\
\Delta_2 &= \sigma_1 \sigma_2 \sigma_1, \\
\end{align*}
\]

etc.
• Theorem (Garside, Adjan, Morton–ElRifai, Thurston).— For each $n$, the family $S_n$ is a Garside structure in $B_n$, bounded by $\sigma_{(n,\ldots,1)}$; the associated monoid is $B_n^+$. 

• “Garside’s fundamental braid” $\Delta_n := \sigma_{(n,\ldots,1)}$, whence $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \ldots \sigma_2 \sigma_1$: 
  $\Delta_1 = 1$, $\Delta_2 = \sigma_1$, $\Delta_2 = \sigma_1 \sigma_2 \sigma_1$, etc.

• A new family of generators: the Garside generators $\sigma_i$
• **Theorem** (Garside, Adjan, Morton-ElRifai, Thurston).— For each \( n \), the family \( S_n \) is a Garside structure in \( B_n \), bounded by \( \sigma_{(n,\ldots,1)} \); the associated monoid is \( B_n^+ \).

• “Garside’s fundamental braid” \( \Delta_n := \sigma_{(n,\ldots,1)} \), whence \( \Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1 \):
  \[
  \Delta_1 = 1, \quad \Delta_2 = \sigma_1, \quad \Delta_3 = \sigma_1 \sigma_2 \sigma_1, \quad \text{etc.}
  \]

• A new family of generators: the **Garside** generators \( \sigma_f \)
  ▶ a very redundant family: \( n! \) elements, whereas only \( n - 1 \) Artin generators;
• Theorem (Garside, Adjan, Morton–ElRifai, Thurston).— For each \( n \), the family \( S_n \) is a Garside structure in \( B_n \), bounded by \( \sigma_{(n,\ldots,1)} \); the associated monoid is \( B_n^+ \).

• “Garside’s fundamental braid” \( \Delta_n := \sigma_{(n,\ldots,1)} \), whence \( \Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \ldots \sigma_2 \sigma_1 \):
  \[
  \Delta_1 = 1, \quad \Delta_2 = \sigma_1, \quad \Delta_2 = \sigma_1 \sigma_2 \sigma_1, \quad \text{etc.}
  \]

• A new family of generators: the Garside generators \( \sigma_f \)
  ▶ a very redundant family: \( n! \) elements, whereas only \( n - 1 \) Artin generators;
  ▶ many expressions for a braid, but a distinguished one: the \( S_n \)-normal one;
Theorem (Garside, Adjan, Morton–ElRifai, Thurston).— For each $n$, the family $S_n$ is a Garside structure in $B_n$, bounded by $\sigma_{(n,\ldots,1)}$; the associated monoid is $B_n^+$. 

“Garside’s fundamental braid” $\Delta_n := \sigma_{(n,\ldots,1)}$, whence $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$:

- $\Delta_1 = 1,$
- $\Delta_2 = \sigma_1,$
- $\Delta_2 = \sigma_1 \sigma_2 \sigma_1,$ etc.

A new family of generators: the Garside generators $\sigma_f$

- a very redundant family: $n!$ elements, whereas only $n-1$ Artin generators;
- many expressions for a braid, but a distinguished one: the $S_n$-normal one;
- in terms of Garside generators, the group $B_n$ – and the monoid $B_n^+$ – are presented by the relations $\sigma_f \sigma_g = \sigma_{fg}$ with $\ell(f) + \ell(g) = \ell(fg)$;

length of $f := \#$ of inversions in $f$
• **Theorem (Garside, Adjan, Morton–ElRifai, Thurston).**— For each $n$, the family $S_n$ is a Garside structure in $B_n$, bounded by $\sigma_{(n,\ldots,1)}$; the associated monoid is $B_n^+$.

• “Garside’s fundamental braid” $\Delta_n := \sigma_{(n,\ldots,1)}$, whence $\Delta_n = \Delta_{n-1} \cdot \sigma_{n-1} \cdots \sigma_2 \sigma_1$:
  
  $\Delta_1 = 1, \quad \Delta_2 = \sigma_1, \quad \Delta_2 = \sigma_1 \sigma_2 \sigma_1$, etc.

• A new family of generators: the **Garside** generators $\sigma_f$
  
  ▶ a very redundant family: $n!$ elements, whereas only $n-1$ Artin generators;
  ▶ many expressions for a braid, but a distinguished one: the $S_n$-normal one;
  ▶ in terms of Garside generators, the group $B_n$ – and the monoid $B_n^+$ – are presented by the relations $\sigma_f \sigma_g = \sigma_{fg}$ with $\ell(f) + \ell(g) = \ell(fg)$;

  **length** of $f := \#$ of inversions in $f$

  ▶ the poset $(S_n, \triangleleft)$ is isomorphic to $(\mathcal{S}_n, \triangleleft)$.

  left-divisibility in $B_n^+$ weak order in $\mathcal{S}_n$
• **Question:** Determine \( N_{n,\ell}^{\text{Gar}^+} := \# \{ \beta \in B_n^+ \mid \|\beta\|^{\text{Gar}} = \ell \} \) and/or its generating series, where \( \|\beta\|^{\text{Gar}} := \text{length of the } S_n\text{-normal decomposition.} \)
Question: Determine $N_{n,\ell}^{\text{Gar}^+} := \# \{ \beta \in B_n^+ \mid \|\beta\|^{\text{Gar}} = \ell \}$ and/or its generating series, where $\|\beta\|^{\text{Gar}} := \text{length of the } S_n\text{-normal decomposition.}$

(and idem with $N_{n,\ell}^{\text{Gar}} := \# \{ \beta \in B_n \mid \|\beta\|^{\text{Gar}} = \ell \}.$)
• **Question:** Determine \( N_{n, \ell}^{\text{Gar}+} := \#\{\beta \in B_n^+ \mid \|\beta\|^\text{Gar} = \ell\} \) and/or its generating series, where \( \|\beta\|^\text{Gar} := \text{length of the } S_n\text{-normal decomposition.} \)

(and idem with \( N_{n, \ell}^{\text{Gar}} := \#\{\beta \in B_n \mid \|\beta\|^\text{Gar} = \ell\}.\)

• An easy question *(contrary to the case of Artin generators)*:
• **Question:** Determine $N_{n, \ell}^{\text{Gar}^+} := \#\{\beta \in B_n^+ \mid \|\beta\|^{\text{Gar}} = \ell\}$ and/or its generating series, where $\|\beta\|^{\text{Gar}} := \text{length of the } S_n\text{-normal decomposition.}$

  (and idem with $N_{n, \ell}^{\text{Gar}} := \#\{\beta \in B_n \mid \|\beta\|^{\text{Gar}} = \ell\}.$)

• An easy question (contrary to the case of Artin generators):
  
  ▶ by construction, $N_{n, \ell}^{\text{Gar}^+} = \# \text{ length } \ell \text{ normal sequences in } B_n^+.$
● **Question:** Determine $N_{n,\ell}^{\text{Gar}^+} := \#\{\beta \in B_n^+ | \|\beta\|^{\text{Gar}} = \ell\}$ and/or its generating series, where $\|\beta\|^{\text{Gar}} := \text{length of the } S_n\text{-normal decomposition}.$

(and idem with $N_{n,\ell}^{\text{Gar}} := \#\{\beta \in B_n | \|\beta\|^{\text{Gar}} = \ell\}$.)

● An easy question *(contrary to the case of Artin generators)*:
  ◮ by construction, $N_{n,\ell}^{\text{Gar}^+} = \# \text{ length } \ell \text{ normal sequences in } B_n^+$,
  ◮ and normality is a **local** property:
• **Question:** Determine $N_{n,\ell}^{\text{Gar}^+} := \#\{\beta \in B_n^+ \mid \|\beta\|^{\text{Gar}} = \ell\}$ and/or its generating series, where $\|\beta\|^{\text{Gar}} :=$ length of the $S_n$-normal decomposition.

(and idem with $N_{n,\ell}^{\text{Gar}} := \#\{\beta \in B_n \mid \|\beta\|^{\text{Gar}} = \ell\}$.)

• **An easy question (contrary to the case of Artin generators):**
  ▶ by construction, $N_{n,\ell}^{\text{Gar}^+} = \#$ length $\ell$ normal sequences in $B_n^+$,
  ▶ and normality is a **local** property:
    a sequence is $S_n$-normal iff every length 2 subsequence is $S_n$-normal.
• **Question:** Determine $N_{n, \ell}^{\text{Gar}^+} := \#\{\beta \in B^+_n \mid \|\beta\|^{\text{Gar}} = \ell\}$ and/or its generating series, where $\|\beta\|^{\text{Gar}} := $ length of the $S_n$-normal decomposition.

(and idem with $N_{n, \ell}^{\text{Gar}} := \#\{\beta \in B_n \mid \|\beta\|^{\text{Gar}} = \ell\}$.)

• **An easy question** *(contrary to the case of Artin generators):*
  - by construction, $N_{n, \ell}^{\text{Gar}^+} = \# \text{ length } \ell \text{ normal sequences in } B^+_n,$
  - and normality is a *local* property:
    - a sequence is $S_n$-normal iff every length 2 subsequence is $S_n$-normal.

• **Proposition.**— Let $M_n$ be the $n! \times n!$ matrix indexed by simple braids *(i.e., by permutations)* s.t. \((M_n)_{s,t} = \begin{cases} 1 & \text{if } (s, t) \text{ is normal}, \\ 0 & \text{otherwise}. \end{cases}\)
• **Question:** Determine $N^\text{Gar}_n,\ell := \#\{\beta \in B^+_n \mid \|\beta\|^\text{Gar} = \ell\}$ and/or its generating series, where $\|\beta\|^\text{Gar} := \text{length of the } S_n\text{-normal decomposition.}$

(and idem with $N^\text{Gar}_n,\ell := \#\{\beta \in B_n \mid \|\beta\|^\text{Gar} = \ell\}$.)

• An easy question (contrary to the case of Artin generators):
  - by construction, $N^\text{Gar}_n,\ell = \#\text{ length } \ell\text{ normal sequences in } B^+_n,$
  - and normality is a **local** property:
    a sequence is $S_n\text{-normal iff every length } 2\text{ subsequence is } S_n\text{-normal.}$

---

• **Proposition.**— Let $M_n$ be the $n! \times n!$ matrix indexed by simple braids (i.e., by permutations) s.t. $(M_n)_{s,t} = \begin{cases} 1 & \text{if } (s,t) \text{ is normal}, \\ 0 & \text{otherwise.} \end{cases}$

Then $N^\text{Gar}_n,\ell$ is the $\text{idth entry in } (1, \ldots, 1) \cdot M^\ell_n$. 
• **Question:** Determine $N_{n, \ell}^{\text{Gar}+} := \# \{ \beta \in B_n^+ \mid \| \beta \|_{\text{Gar}} = \ell \}$ and/or its generating series, where $\| \beta \|_{\text{Gar}} := \text{length of the } S_n\text{-normal decomposition.}$

(and idem with $N_{n, \ell}^{\text{Gar}} := \# \{ \beta \in B_n \mid \| \beta \|_{\text{Gar}} = \ell \}.)$

• An easy question (contrary to the case of Artin generators):
  ▶ by construction, $N_{n, \ell}^{\text{Gar}+} = \# \text{ length } \ell \text{ normal sequences in } B_n^+,$
  ▶ and normality is a local property:
    a sequence is $S_n\text{-normal iff every length } 2 \text{ subsequence is } S_n\text{-normal.}$

• **Proposition.**— Let $M_n$ be the $n! \times n!$ matrix indexed by simple braids (i.e., by permutations) s.t. $(M_n)_{s, t} = \begin{cases} 1 & \text{if } (s, t) \text{ is normal,} \\ 0 & \text{otherwise.} \end{cases}$

Then $N_{n, \ell}^{\text{Gar}+}$ is the idth entry in $(1, \ldots, 1) \cdot M_n^\ell.$

▶ For each $n,$ the generating series of $N_{n, \ell}^{\text{Gar}+}$ is rational.
Lemma 1: For $f, g$ in $\mathcal{S}_n$, the pair $(\sigma_f, \sigma_g)$ is normal iff $\text{Desc}(f) \supseteq \text{Desc}(g^{-1})$.

$\uparrow$

descents of $f := \{k | f(k) > f(k + 1)\}$
Lemma 1: For $f, g$ in $\mathcal{S}_n$, the pair $(\sigma_f, \sigma_g)$ is normal iff $\text{Desc}(f) \supseteq \text{Desc}(g^{-1})$.

$\text{descents of } f := \{k \mid f(k) > f(k+1)\}$

Hence, if $\text{Desc}(g^{-1}) = \text{Desc}(g'^{-1})$, the columns of $g$ and $g'$ in $M_n$ are equal;
Lemma 1: For \( f, g \) in \( \mathcal{S}_n \), the pair \( (\sigma_f, \sigma_g) \) is normal iff \( \text{Desc}(f) \supseteq \text{Desc}(g^{-1}) \).

\[ \text{descents of } f := \{ k | f(k) > f(k+1) \} \uparrow \]

Hence, if \( \text{Desc}(g^{-1}) = \text{Desc}(g'^{-1}) \), the columns of \( g \) and \( g' \) in \( M_n \) are equal;

columns can be gathered: replace \( M_n \) (size \( n! \)) with \( M'_n \) (size \( 2^{n-1} \)).
Reducing the size of the matrix

- **Lemma 1**: For \( f, g \) in \( S_n \), the pair \((\sigma_f, \sigma_g)\) is normal iff \( \text{Desc}(f) \supseteq \text{Desc}(g^{-1}) \).

  \[
  \text{descents of } f := \{ k \mid f(k) > f(k + 1) \}
  \]

- Hence, if \( \text{Desc}(g^{-1}) = \text{Desc}(g'^{-1}) \), the columns of \( g \) and \( g' \) in \( M_n \) are equal;
  - columns can be gathered: replace \( M_n \) (size \( n! \)) with \( M'_n \) (size \( 2^{n-1} \)).

- **Lemma 2**: The \# of permutations \( f \) satisfying \( \text{Desc}(f) \supseteq I \) and \( \text{Desc}(f^{-1}) \supseteq J \) is the \# of \( k \times \ell \) matrices with entries in \( \mathbb{N} \) s.t. the sum of the \( i \)th row is \( p_i \) and the sum of the \( j \)th column is \( q_j \), with \( (p_1, \ldots, p_k) \) the composition of \( I \) and \( (q_1, \ldots, q_\ell) \) that of \( J \).
• **Lemma 1**: For \(f, g \in \mathcal{S}_n\), the pair \((\sigma_f, \sigma_g)\) is normal iff \(\text{Desc}(f) \supseteq \text{Desc}(g^{-1})\).

\[\text{descents of } f := \{k \mid f(k) > f(k + 1)\}\]

• Hence, if \(\text{Desc}(g^{-1}) = \text{Desc}(g'^{-1})\), the columns of \(g\) and \(g'\) in \(M_n\) are equal;
  ▶ columns can be gathered: replace \(M_n\) (size \(n!\)) with \(M'_n\) (size \(2^{n-1}\)).

• **Lemma 2**: The \# of permutations \(f\) satisfying \(\text{Desc}(f) \supseteq I\) and \(\text{Desc}(f^{-1}) \supseteq J\) is the \# of \(k \times \ell\) matrices with entries in \(\mathbb{N}\) s.t. the sum of the \(i\)th row is \(p_i\) and the sum of the \(j\)th column is \(q_j\), with \((p_1, \ldots, p_k)\) the composition of \(I\) and \((q_1, \ldots, q_\ell)\) that of \(J\).

• Hence \((M'_n)_{I,J}\) only depends on the partition of \(J\);
Reducing the size of the matrix

- **Lemma 1**: For \( f, g \in S_n \), the pair \((\sigma_f, \sigma_g)\) is normal iff \( \text{Desc}(f) \supseteq \text{Desc}(g^{-1}) \).

\[
\text{descents of } f := \{ k \mid f(k) > f(k + 1) \}
\]

- Hence, if \( \text{Desc}(g^{-1}) = \text{Desc}(g'^{-1}) \), the columns of \( g \) and \( g' \) in \( M_n \) are equal;
  - columns can be gathered: replace \( M_n \) (size \( n! \)) with \( M'_n \) (size \( 2^{n-1} \)).

- **Lemma 2**: The \# of permutations \( f \) satisfying \( \text{Desc}(f) \supseteq I \) and \( \text{Desc}(f^{-1}) \supseteq J \) is the \# of \( k \times \ell \) matrices with entries in \( \mathbb{N} \) s.t. the sum of the \( i \)th row is \( p_i \) and the sum of the \( j \)th column is \( q_j \), with \((p_1, ..., p_k)\) the composition of \( I \) and \((q_1, ..., q_\ell)\) that of \( J \).

- Hence \((M'_n)_{I,J}\) only depends on the partition of \( J \);
  - can gather columns again: replace \( M'_n \) (size \( 2^{n-1} \)) with \( M''_n \) (size \( p(n) \)).
Reducing the size of the matrix

- **Lemma 1**: For $f, g$ in $\mathcal{S}_n$, the pair $(\sigma_f, \sigma_g)$ is normal iff $\text{Desc}(f) \supseteq \text{Desc}(g^{-1})$.

  \[ \text{descents of } f := \{ k \mid f(k) > f(k + 1) \} \]

- Hence, if $\text{Desc}(g^{-1}) = \text{Desc}(g'^{-1})$, the columns of $g$ and $g'$ in $M_n$ are equal;
  - columns can be gathered: replace $M_n$ (size $n!$) with $M'_n$ (size $2^{n-1}$).

- **Lemma 2**: The \# of permutations $f$ satisfying $\text{Desc}(f) \supseteq I$ and $\text{Desc}(f^{-1}) \supseteq J$ is the \# of $k \times \ell$ matrices with entries in $\mathbb{N}$ s.t. the sum of the $i$th row is $p_i$ and the sum of the $j$th column is $q_j$, with $(p_1, \ldots, p_k)$ the composition of $I$ and $(q_1, \ldots, q_\ell)$ that of $J$.

- Hence $(M'_n)_{I,J}$ only depends on the partition of $J$;
  - can gather columns again: replace $M'_n$ (size $2^{n-1}$) with $M''_n$ (size $p(n)$).

- Remarks:
  - Going from $M_n$ to $M''_n \approx$ reducing the size of the automatic structure of $B_n$
    from $n!$ to $p(n)$ ($\sim \frac{1}{4n\sqrt{3}} e^{\pi \sqrt{2n/3}}$)
• **Lemma 1**: For \( f, g \) in \( \mathcal{S}_n \), the pair \((\sigma_f, \sigma_g)\) is normal \iff \( \text{Desc}(f) \supseteq \text{Desc}(g^{-1}) \).

\[ \text{descents of } f := \{k \mid f(k) > f(k + 1)\} \]

• Hence, if \( \text{Desc}(g^{-1}) = \text{Desc}(g'^{-1}) \), the columns of \( g \) and \( g' \) in \( M_n \) are equal;
  ► columns can be gathered: replace \( M_n \) (size \( n! \)) with \( M'_n \) (size \( 2^{n-1} \)).

• **Lemma 2**: The \# of permutations \( f \) satisfying \( \text{Desc}(f) \supseteq I \) and \( \text{Desc}(f^{-1}) \supseteq J \) is the \# of \( k \times \ell \) matrices with entries in \( \mathbb{N} \) s.t. the sum of the \( i \)th row is \( p_i \) and the sum of the \( j \)th column is \( q_j \), with \( (p_1, \ldots, p_k) \) the composition of \( I \) and \( (q_1, \ldots, q_{\ell}) \) that of \( J \).

• Hence \( (M'_n)_{I,J} \) only depends on the partition of \( J \);
  ► can gather columns again: replace \( M'_n \) (size \( 2^{n-1} \)) with \( M''_n \) (size \( p(n) \)).

• Remarks:
  ► Going from \( M_n \) to \( M''_n \approx \) reducing the size of the automatic structure of \( B_n \)
  from \( n! \) to \( p(n) \) (\( \sim \frac{1}{4n\sqrt{3}} e^{\pi \sqrt{2n/3}} \))
  ► \text{(Hohlweg)} That \( (M'_n)_{I,J} \) only depends on the partition of \( J \) is
  (another) form of Solomon’s result about the descent algebra.
• The growth rate of $N_{n,\ell}^{\text{Gar}^+}$ is connected with the eigenvalues of $M_n$, hence of $M''_n$: 
• The growth rate of $N_{n,\ell}^{\text{Gar}^+}$ is connected with the eigenvalues of $M_n$, hence of $M_n^{''}$: 
\[ \text{CharPol}(M_1^{''}) = x - 1 \]
The growth rate of $N_{n, \ell}^{\text{Gar}+}$ is connected with the eigenvalues of $M_n$, hence of $M''_n$:

\[
\text{CharPol}(M''_1) = x - 1
\]
\[
\text{CharPol}(M''_2) = \text{CharPol}(M''_1) \cdot (x - 1)
\]
• The growth rate of $N_{n, \ell}^{\text{Gar}^+}$ is connected with the eigenvalues of $M_n$, hence of $M_n''$:

\[
\begin{align*}
\text{CharPol}(M_1'') &= x - 1 \\
\text{CharPol}(M_2'') &= \text{CharPol}(M_1'') \cdot (x - 1) \\
\text{CharPol}(M_3'') &= \text{CharPol}(M_2'') \cdot (x - 2)
\end{align*}
\]
• The growth rate of $N_{n,\ell}^{Gar+}$ is connected with the eigenvalues of $M_n$, hence of $M''_n$:

\[
\begin{align*}
\text{CharPol}(M''_1) &= x - 1 \\
\text{CharPol}(M''_2) &= \text{CharPol}(M''_1) \cdot (x - 1) \\
\text{CharPol}(M''_3) &= \text{CharPol}(M''_2) \cdot (x - 2) \\
\text{CharPol}(M''_4) &= \text{CharPol}(M''_3) \cdot (x^2 - 6x + 3)
\end{align*}
\]
The growth rate of $N_{n,\ell}^{\text{Gar}^+}$ is connected with the eigenvalues of $M_n$, hence of $M''_n$:

\begin{align*}
\text{CharPol}(M''_1) &= x - 1 \\
\text{CharPol}(M''_2) &= \text{CharPol}(M''_1) \cdot (x - 1) \\
\text{CharPol}(M''_3) &= \text{CharPol}(M''_2) \cdot (x - 2) \\
\text{CharPol}(M''_4) &= \text{CharPol}(M''_3) \cdot (x^2 - 6x + 3) \\
\text{CharPol}(M''_5) &= \text{CharPol}(M''_4) \cdot (x^2 - 20x + 24), \\
\end{align*}
• The growth rate of $N_{n+1}^{Gar+}$ is connected with the eigenvalues of $M_n$, hence of $M''_n$:

\[
\begin{align*}
\text{CharPol}(M''_1) &= x - 1 \\
\text{CharPol}(M''_2) &= \text{CharPol}(M''_1) \cdot (x - 1) \\
\text{CharPol}(M''_3) &= \text{CharPol}(M''_2) \cdot (x - 2) \\
\text{CharPol}(M''_4) &= \text{CharPol}(M''_3) \cdot (x^2 - 6x + 3) \\
\text{CharPol}(M''_5) &= \text{CharPol}(M''_4) \cdot (x^2 - 20x + 24),...
\end{align*}
\]

• **Theorem (Hivert–Novelli–Thibon).** —

The characteristic polynomial of $M''_n$ divides that of $M''_{n+1}$.
• The growth rate of $N_{n,k}^{\text{Gar}+}$ is connected with the eigenvalues of $M_n$, hence of $M''_n$:

\[
\begin{align*}
\text{CharPol}(M''_1) &= x - 1 \\
\text{CharPol}(M''_2) &= \text{CharPol}(M''_1) \cdot (x - 1) \\
\text{CharPol}(M''_3) &= \text{CharPol}(M''_2) \cdot (x - 2) \\
\text{CharPol}(M''_4) &= \text{CharPol}(M''_3) \cdot (x^2 - 6x + 3) \\
\text{CharPol}(M''_5) &= \text{CharPol}(M''_4) \cdot (x^2 - 20x + 24),...
\end{align*}
\]

• **Theorem (Hivert–Novelli–Thibon).**—

The characteristic polynomial of $M''_n$ divides that of $M''_{n+1}$.

- **Proof:** Interpret $M''_n$ in terms of quasi-symmetric functions in the sense of Malvenuto–Reutenauer, and determine the LU-decomposition.
The growth rate of $N_{n, \ell}^{\text{Gar}^+}$ is connected with the eigenvalues of $M_n$, hence of $M_n''$:

- $\text{CharPol}(M_1'') = x - 1$
- $\text{CharPol}(M_2'') = \text{CharPol}(M_1'') \cdot (x - 1)$
- $\text{CharPol}(M_3'') = \text{CharPol}(M_2'') \cdot (x - 2)$
- $\text{CharPol}(M_4'') = \text{CharPol}(M_3'') \cdot (x^2 - 6x + 3)$
- $\text{CharPol}(M_5'') = \text{CharPol}(M_4'') \cdot (x^2 - 20x + 24),...$

**Theorem (Hivert–Novelli–Thibon).—**

The characteristic polynomial of $M_n''$ divides that of $M_{n+1}''$.

**Proof:** Interpret $M_n''$ in terms of quasi-symmetric functions in the sense of Malvenuto–Reutenauer, and determine the LU-decomposition.

- Spectral radius:
• The growth rate of $N_{n,\ell}^{\text{Gar}^+}$ is connected with the eigenvalues of $M_n$, hence of $M_n''$:  
\[
\begin{align*}
\text{CharPol}(M_1'') &= x - 1 \\
\text{CharPol}(M_2'') &= \text{CharPol}(M_1'') \cdot (x - 1) \\
\text{CharPol}(M_3'') &= \text{CharPol}(M_2'') \cdot (x - 2) \\
\text{CharPol}(M_4'') &= \text{CharPol}(M_3'') \cdot (x^2 - 6x + 3) \\
\text{CharPol}(M_5'') &= \text{CharPol}(M_4'') \cdot (x^2 - 20x + 24),...
\end{align*}
\]

• **Theorem (Hivert–Novelli–Thibon).**— The characteristic polynomial of $M_n''$ divides that of $M_{n+1}''$.

  ▶ Proof: Interpret $M_n''$ in terms of quasi-symmetric functions in the sense of Malvenuto–Reutenauer, and determine the LU-decomposition.  

• **Spectral radius:**

<table>
<thead>
<tr>
<th>$n$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(M_n)$</td>
<td>1</td>
<td>2</td>
<td>5.5</td>
<td>18.7</td>
<td>77.4</td>
<td>373.9</td>
<td>2066.6</td>
</tr>
</tbody>
</table>
The growth rate of $N_{n,\ell}^{\text{Gar}^+}$ is connected with the eigenvalues of $M_n$, hence of $M''_n$:

\[
\begin{align*}
\text{CharPol}(M'_n) &= x - 1 \\
\text{CharPol}(M''_1) &= \text{CharPol}(M'_1) \cdot (x - 1) \\
\text{CharPol}(M''_2) &= \text{CharPol}(M'_2) \cdot (x - 2) \\
\text{CharPol}(M''_3) &= \text{CharPol}(M'_3) \cdot (x^2 - 6x + 3) \\
\text{CharPol}(M''_4) &= \text{CharPol}(M'_4) \cdot (x^2 - 20x + 24) \\
\text{CharPol}(M''_5) &= \text{CharPol}(M'_5) \cdot (x^2 - 20x + 24),\
\end{align*}
\]

\- **Theorem (Hivert–Novelli–Thibon).**—

The characteristic polynomial of $M''_n$ divides that of $M''_{n+1}$.

\- **Proof:** Interpret $M''_n$ in terms of quasi-symmetric functions in the sense of Malvenuto–Reutenauer, and determine the LU-decomposition.

\- **Spectral radius:**

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
n & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
\rho(M_n) & 1 & 2 & 5.5 & 18.7 & 77.4 & 373.9 & 2066.6 \\
\hline
\rho(M_n) / (n \rho(M_{n-1})) & 0.5 & 0.667 & 0.681 & 0.687 & 0.689 & 0.690 & 0.691 \\
\hline
\end{array}
\]
• The growth rate of $N_{n,\ell}^{\text{Gar}^+}$ is connected with the eigenvalues of $M_n$, hence of $M_n''$:

CharPol($M_1''$) = $x - 1$
CharPol($M_2''$) = CharPol($M_1''$) · ($x - 1$)
CharPol($M_3''$) = CharPol($M_2''$) · ($x - 2$)
CharPol($M_4''$) = CharPol($M_3''$) · ($x^2 - 6x + 3$)
CharPol($M_5''$) = CharPol($M_4''$) · ($x^2 - 20x + 24$),...

• Theorem (Hivert–Novelli–Thibon).—

The characteristic polynomial of $M_n''$ divides that of $M_{n+1}''$.

Proof: Interpret $M_n''$ in terms of quasi-symmetric functions in the sense of Malvenuto–Reutenauer, and determine the LU-decomposition.

• Spectral radius:

<table>
<thead>
<tr>
<th>$n$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho(M_n)$</td>
<td>1</td>
<td>2</td>
<td>5.5</td>
<td>18.7</td>
<td>77.4</td>
<td>373.9</td>
<td>2066.6</td>
</tr>
<tr>
<td>$\rho(M_n)/(n\rho(M_{n-1}))$</td>
<td>0.5</td>
<td>0.667</td>
<td>0.681</td>
<td>0.687</td>
<td>0.689</td>
<td>0.690</td>
<td>0.691</td>
</tr>
</tbody>
</table>

What is the asymptotic behaviour?
• So far: $N_{n,\ell}^{\text{Gar}^+}$ with $n$ fixed and $\ell$ varying;
• So far: $N_{n,\ell}^{\text{Gar}^+}$ with $n$ fixed and $\ell$ varying; for $\ell$ fixed and $n$ varying, different induction schemes
• So far: $\mathbb{N}_{n,\ell}^{\text{Gar}^+}$ with $n$ fixed and $\ell$ varying;
  for $\ell$ fixed and $n$ varying, different induction schemes (starting with $\mathbb{N}_{n,1}^{\text{Gar}^+} = n!$).
• So far: $N_{n,\ell}^{\text{Gar}^+}$ with $n$ fixed and $\ell$ varying; for $\ell$ fixed and $n$ varying, different induction schemes (starting with $N_{n,1}^{\text{Gar}^+} = n!$).

• Proposition. — $N_{n,2}^{\text{Gar}^+} = \sum_{0}^{n-1} (-1)^{n+i+1} \binom{n}{i}^2 N_{i,2}^{\text{Gar}^+}$, 
• So far: $N_{n,\ell}^{\text{Gar}^+}$ with $n$ fixed and $\ell$ varying;
  for $\ell$ fixed and $n$ varying, different induction schemes (starting with $N_{n,1}^{\text{Gar}^+} = n!$).

**Proposition.**

$N_{n,2}^{\text{Gar}^+} = \sum_{i=0}^{n-1} (-1)^{n+i+1} \binom{n}{i}^2 N_{i,2}^{\text{Gar}^+}$,

whence (Carlitz–Scoville–Vaughan) $1 + \sum_n N_{n,2}^{\text{Gar}^+} \frac{z^n}{(n!)^2} = \frac{1}{J_0(\sqrt{z})}$. 

Bessel function $J_0$
• So far: $N_{n,\ell}^{\text{Gar}^+}$ with $n$ fixed and $\ell$ varying;
  for $\ell$ fixed and $n$ varying, different induction schemes (starting with $N_{n,1}^{\text{Gar}^+} = n!$).

• Proposition. — $N_{n,2}^{\text{Gar}^+} = \sum_{i=0}^{n-1} (-1)^{n+i+1} \binom{n}{i}^2 N_{i,2}^{\text{Gar}^+}$,
  whence (Carlitz–Scoville–Vaughan) $1 + \sum_n N_{n,2}^{\text{Gar}^+} \frac{z^n}{(n!)^2} = \frac{1}{J_0(\sqrt{z})}$.  
Bessel function $J_0$

• Put $N_{n,\ell}^{\text{Gar}^+}(s) := \#$ normal sequences in $B_n^+$ finishing with $s$:
So far: \( N_{n,\ell}^{\text{Gar}^+} \) with \( n \) fixed and \( \ell \) varying; for \( \ell \) fixed and \( n \) varying, different induction schemes (starting with \( N_{n,1}^{\text{Gar}^+} = n! \)).

**Proposition.**  
\[
N_{n,2}^{\text{Gar}^+} = \sum_{i=0}^{n-1} (-1)^{n+i+1} \binom{n}{i}^2 N_{i,2}^{\text{Gar}^+},
\]
whence (Carlitz–Scoville–Vaughan)  
\[
1 + \sum_n N_{n,2}^{\text{Gar}^+} \frac{z^n}{(n!)^2} = \frac{1}{J_0(\sqrt{z})}.
\]

**Put**  
\( N_{n,\ell}^{\text{Gar}^+}(s) := \# \text{ normal sequences in } B_n^+ \text{ finishing with } s \):  
\[
N_{n,3}^{\text{Gar}^+}(\Delta_{n-1}) = 2^{n-1},
\]
\( B_n^+ \) Bessel function \( J_0 \)
• So far: \( N_{n,\ell}^{\text{Gar}^+} \) with \( n \) fixed and \( \ell \) varying; for \( \ell \) fixed and \( n \) varying, different induction schemes (starting with \( N_{n,1}^{\text{Gar}^+} = n! \)).

\[
\text{Proposition.} \quad N_{n,2}^{\text{Gar}^+} = \sum_{i=0}^{n-1} (-1)^{n+i+1} \binom{n}{i}^2 N_{i,2}^{\text{Gar}^+},
\]

whence (Carlitz–Scoville–Vaughan) \( 1 + \sum_n N_{n,2}^{\text{Gar}^+} \frac{z^n}{(n!)^2} = \frac{1}{J_0(\sqrt{z})} \).

Bessel function \( J_0 \)

• Put \( N_{n,\ell}^{\text{Gar}^+}(s) := \# \) normal sequences in \( B_n^+ \) finishing with \( s \):

\[
N_{n,3}^{\text{Gar}^+}(\Delta_{n-1}) = 2^{n-1}, \quad N_{n,3}^{\text{Gar}^+}(\Delta_{n-2}) \sim 2 \cdot 3^n,
\]
• So far: $N_{n,\ell}^{\text{Gar}^+}$ with $n$ fixed and $\ell$ varying; for $\ell$ fixed and $n$ varying, different induction schemes (starting with $N_{n,1}^{\text{Gar}^+} = n!$).

• **Proposition.** — $N_{n,2}^{\text{Gar}^+} = \sum_{0}^{n-1} (-1)^{n+i+1} \binom{n}{i}^2 N_{i,2}^{\text{Gar}^+}$, whence (Carlitz–Scoville–Vaughan) $1 + \sum_{n} N_{n,2}^{\text{Gar}^+} \frac{z^n}{(n!)^2} = \frac{1}{J_0(\sqrt{z})}$.

• Put $N_{n,\ell}^{\text{Gar}^+}(s) := \#$ normal sequences in $B_n^+$ finishing with $s$:
  $N_{n,3}^{\text{Gar}^+}(\Delta_{n-1}) = 2^{n-1}$,  $N_{n,3}^{\text{Gar}^+}(\Delta_{n-2}) \sim 2 \cdot 3^n$,  $N_{n,4}^{\text{Gar}^+}(\Delta_{n-1}) = \lfloor n!e \rfloor - 1...
• So far: $N_{n,\ell}^{\text{Gar}+}$ with $n$ fixed and $\ell$ varying;
  for $\ell$ fixed and $n$ varying, different induction schemes (starting with $N_{n,1}^{\text{Gar}+} = n!$).

• Proposition. — $N_{n,2}^{\text{Gar}+} = \sum_{i=0}^{n-1} (-1)^{n+i+1} \binom{n}{i}^2 N_{i,2}^{\text{Gar}+},$
  
  whence (Carlitz–Scoville–Vaughan) $1 + \sum_n N_{n,2}^{\text{Gar}+} \frac{z^n}{(n!)^2} = \frac{1}{J_0(\sqrt{z})}.$

Put $N_{n,\ell}^{\text{Gar}+}(s) := \#$ normal sequences in $B_n^+$ finishing with $s$:

$N_{n,3}^{\text{Gar}+}(\Delta_{n-1}) = 2^{n-1}, \quad N_{n,3}^{\text{Gar}+}(\Delta_{n-2}) \sim 2 \cdot 3^n, \quad N_{n,4}^{\text{Gar}+}(\Delta_{n-1}) = \lfloor n! e \rfloor - 1$...

• Conclusion: Braid combinatorics w.r.t. Garside generators
  leads to new, interesting (?) questions about permutation combinatorics.
Motivation

- Braid groups are countable, braids can be encoded in integers, and most of their (algebraic) properties can be proved in the logical framework of Peano arithmetic, and even of weaker subsystems, like $I\Sigma_1$ where induction is limited to formulas involving at most one unbounded quantifier.
• Braid groups are countable, braids can be encoded in integers, and most of their (algebraic) properties can be proved in the logical framework of Peano arithmetic, and even of weaker subsystems, like $IΣ_1$ where induction is limited to formulas involving at most one unbounded quantifier.

• Braids admit an ordering, s.t. $(B_n^+, \leq)$ is a well-ordering of type $ω^{n-2}$;
• Braid groups are countable, braids can be encoded in integers, and most of their (algebraic) properties can be proved in the logical framework of Peano arithmetic, and even of weaker subsystems, like $\text{I} \Sigma_1$ where induction is limited to formulas involving at most one unbounded quantifier.

• Braids admit an ordering, s.t. $(B^+_n, \leq)$ is a well-ordering of type $\omega^{\omega^{n-2}}$;
  ▶ one can construct long (finite) descending sequences of positive braids;
• Braid groups are countable, braids can be encoded in integers, and most of their (algebraic) properties can be proved in the logical framework of Peano arithmetic, and even of weaker subsystems, like $IΣ_1$ where induction is limited to formulas involving at most one unbounded quantifier.

• Braids admit an ordering, s.t. $(B^+_n, \leq)$ is a well-ordering of type $ω^{ω^{n-2}}$;
  ▶ one can construct long (finite) descending sequences of positive braids;
  ▶ but this cannot be done in $IΣ_1$ (reminiscent of Goodstein’s sequences);
• Braid groups are countable, braids can be encoded in integers, and most of their (algebraic) properties can be proved in the logical framework of Peano arithmetic, and even of weaker subsystems, like $IΣ_1$ where induction is limited to formulas involving at most one unbounded quantifier.

• Braids admit an ordering, s.t. $(B_n^+, \leq)$ is a well-ordering of type $ω^{ω^{n-2}}$;
  ▶ one can construct long (finite) descending sequences of positive braids;
  ▶ but this cannot be done in $IΣ_1$ (reminiscent of Goodstein’s sequences);
  ▶ where is the transition from $IΣ_1$-provability to $IΣ_1$-unprovability?
Motivation

• Braid groups are countable, braids can be encoded in integers, and most of their (algebraic) properties can be proved in the logical framework of Peano arithmetic, and even of weaker subsystems, like $IΣ_1$ where induction is limited to formulas involving at most one unbounded quantifier.

• Braids admit an ordering, s.t. $(B_n^+, \leq)$ is a well-ordering of type $\omega \omega^{n-2}$;
  ▶ one can construct long (finite) descending sequences of positive braids;
  ▶ but this cannot be done in $IΣ_1$ (reminiscent of Goodstein’s sequences);
  ▶ where is the transition from $IΣ_1$-provability to $IΣ_1$-unprovability?

• Definition: For $F : \mathbb{N} \to \mathbb{N}$, let $WO_F$ be the statement:
Motivation

- Braid groups are countable, braids can be encoded in integers, and most of their (algebraic) properties can be proved in the logical framework of Peano arithmetic, and even of weaker subsystems, like $IΣ_1$ where induction is limited to formulas involving at most one unbounded quantifier.

- Braids admit an ordering, s.t. $(B^+_n, ≤)$ is a well-ordering of type $ω^{ω^{n-2}}$;
  - one can construct long (finite) descending sequences of positive braids;
  - but this cannot be done in $IΣ_1$ (reminiscent of Goodstein’s sequences);
  - where is the transition from $IΣ_1$-provability to $IΣ_1$-unprovability?

- **Definition**: For $F : \mathbb{N} → \mathbb{N}$, let $WO_F$ be the statement:
  "For every $ℓ$, there exists $m$ s.t. every strictly decreasing sequence $(β_t)^{t≥0}$ in $B^+_3$ satisfying $\|β_t\|^{Gar} ≤ ℓ + F(t)$ for each $t$ has length at most $m$".
• Braid groups are countable, braids can be encoded in integers, and most of their (algebraic) properties can be proved in the logical framework of Peano arithmetic, and even of weaker subsystems, like $IΣ_1$ where induction is limited to formulas involving at most one unbounded quantifier.

• Braids admit an ordering, s.t. $(B^+_n, \leq)$ is a well-ordering of type $\omega \omega^{n-2}$;
  ★ one can construct long (finite) descending sequences of positive braids;
  ★ but this cannot be done in $IΣ_1$ (reminiscent of Goodstein’s sequences);
  ★ where is the transition from $IΣ_1$-provability to $IΣ_1$-unprovability?

• Definition: For $F : \mathbb{N} \rightarrow \mathbb{N}$, let $WO_F$ be the statement:
  "For every $\ell$, there exists $m$ s.t. every strictly decreasing sequence $(\beta_t)_{t \geq 0}$ in $B^+_3$ satisfying $\|\beta_t\|^{Gar} \leq \ell + F(t)$ for each $t$ has length at most $m$".

• $WO_0$ trivially true (finite #), and $WO_F$ provable for every $F$ using König’s Lemma.
Motivation

• Braid groups are countable, braids can be encoded in integers, and most of their (algebraic) properties can be proved in the logical framework of Peano arithmetic, and even of weaker subsystems, like $I\Sigma_1$ where induction is limited to formulas involving at most one unbounded quantifier.

• Braids admit an ordering, s.t. $(B^+_n, \leq)$ is a well-ordering of type $\omega \omega^{n-2}$;
  ▶ one can construct long (finite) descending sequences of positive braids;
  ▶ but this cannot be done in $I\Sigma_1$ (reminiscent of Goodstein’s sequences);
  ▶ where is the transition from $I\Sigma_1$-provability to $I\Sigma_1$-unprovability?

• Definition: For $F : \mathbb{N} \to \mathbb{N}$, let $WO_F$ be the statement:
  "For every $\ell$, there exists $m$ s.t. every strictly decreasing sequence $(\beta_t)_{t \geq 0}$ in $B^+_3$ satisfying $\|\beta_t\|^{\text{Gar}} \leq \ell + F(t)$ for each $t$ has length at most $m$".

• $WO_0$ trivially true (finite #), and $WO_F$ provable for every $F$ using König’s Lemma.

• Theorem (Carlucci, D., Weiermann).— For $r \leq \omega$, let $F_r(x) := \lceil \text{Ack}_r^{-1}(x) \sqrt{x} \rceil$. 
Motivation

- Braid groups are countable, braids can be encoded in integers, and most of their (algebraic) properties can be proved in the logical framework of Peano arithmetic, and even of weaker subsystems, like $I\Sigma_1$ where induction is limited to formulas involving at most one unbounded quantifier.

- Braids admit an ordering, s.t. $(B^+_n, \leq)$ is a well-ordering of type $\omega \omega^{n-2}$;  
  - one can construct long (finite) descending sequences of positive braids;  
  - but this cannot be done in $I\Sigma_1$ (reminiscent of Goodstein’s sequences);  
  - where is the transition from $I\Sigma_1$-provability to $I\Sigma_1$-unprovability?

- **Definition**: For $F: \mathbb{N} \rightarrow \mathbb{N}$, let $WO_F$ be the statement:
  
  "For every $\ell$, there exists $m$ s.t. every strictly decreasing sequence $(\beta_t)_{t \geq 0}$ in $B^+_3$ satisfying $\|\beta_t\|^{\text{Gar}} \leq \ell + F(t)$ for each $t$ has length at most $m".

- $WO_0$ trivially true (finite #), and $WO_F$ provable for every $F$ using König’s Lemma.

- **Theorem** (Carlucci, D., Weiermann).— For $r \leq \omega$, let $F_r(x) := \lfloor \text{Ack}^{-1}_r(x) \sqrt{x} \rfloor$.
  
  Then $WO_{F_r}$ is $I\Sigma_1$-provable for finite $r$, and $I\Sigma_1$-unprovable for $r = \omega$. 
Motivation

- Braid groups are countable, braids can be encoded in integers, and most of their (algebraic) properties can be proved in the logical framework of Peano arithmetic, and even of weaker subsystems, like $IΣ_1$ where induction is limited to formulas involving at most one unbounded quantifier.

- Braid groups admit an ordering, s.t. $(B^+_n, \leq)$ is a well-ordering of type $\omega^\omega^{n-2}$;  
  - one can construct long (finite) descending sequences of positive braids;  
  - but this cannot be done in $IΣ_1$ (reminiscent of Goodstein’s sequences);  
  - where is the transition from $IΣ_1$-provability to $IΣ_1$-unprovability?

- **Definition:** For $F : \mathbb{N} \to \mathbb{N}$, let $WO_F$ be the statement:  
  "For every $\ell$, there exists $m$ s.t. every strictly decreasing sequence $(\beta_t)_{t \geq 0}$ in $B^+_3$ satisfying $\|\beta_t\|^{Gar} \leq \ell + F(t)$ for each $t$ has length at most $m".

- $WO_0$ trivially true (finite #), and $WO_F$ provable for every $F$ using König’s Lemma.

- **Theorem (Carlucci, D., Weiermann).—** For $r \leq \omega$, let $F_r(x) := \lfloor \text{Ack}^{-1}_r(x) \sqrt{x} \rfloor$.  
  Then $WO_{F_r}$ is $IΣ_1$-provable for finite $r$, and $IΣ_1$-unprovable for $r = \omega$.

- **Proof:** Evaluate $\#\{\beta \in B^+_3 \mid \|\beta\|^{Gar} \leq \ell \& \beta < \Delta^k_3\}$.  

□
• Plan:

1. Braid combinatorics: Artin generators
2. Braid combinatorics: Garside generators
Another family of generators for $B_n$: the Birman–Ko–Lee generators
Another family of generators for $B_n$: the Birman–Ko–Lee generators

$$a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1} \cdots \sigma_{j-1}^{-1}$$

for $1 \leq i < j \leq n$. 
Another family of generators for $B_n$: the Birman–Ko–Lee generators

$$a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1}^{-1} \cdots \sigma_{j-1}^{-1} \text{ for } 1 \leq i < j \leq n.$$
• Another family of generators for $B_n$: the **Birman–Ko–Lee** generators

$$a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1} \cdots \sigma_{j-1}^{-1}$$

for $1 \leq i < j \leq n$. 

\[ \begin{array}{c}
\text{i} & \text{j} \\
\text{=}\end{array} \Rightarrow \begin{array}{c}
\text{i} & \text{j} \\
\text{=}\end{array} \]
• Another family of generators for $B_n$: the Birman–Ko–Lee generators

$$a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1} \cdots \sigma_{j-1}^{-1}$$

for $1 \leq i < j \leq n$. 

![Diagram](attachment:image.png)
• Another family of generators for $B_n$: the Birman–Ko–Lee generators

$$a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1} \cdots \sigma_{j-1}$$
for $1 \leq i < j \leq n$.

• The dual braid monoid: the submonoid $B_n^{++}$ of $B_n$ generated by the elements $a_{i,j}$.
• Another family of generators for $B_n$: the Birman–Ko–Lee generators

$$a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1} \cdots \sigma_{j-1}$$

for $1 \leq i < j \leq n$.

• The dual braid monoid: the submonoid $B_{++}^*$ of $B_n$ generated by the elements $a_{i,j}$.

• Proposition (Birman–Ko–Lee, 1997).— Let $\delta_n = \sigma_{n-1} \cdots \sigma_2 \sigma_1$. Then the family of all divisors of $\delta_n$ in $B_{++}^*$ is a Garside structure in $B_n$; it is bounded by $\delta_n$. 
Another family of generators for $B_n$: the Birman–Ko–Lee generators

$$a_{i,j} := \sigma_{j-1} \cdots \sigma_{i+1} \sigma_i \sigma_{i+1} \cdots \sigma_{j-1}$$

for $1 \leq i < j \leq n$.

The dual braid monoid: the submonoid $B_n^{++}$ of $B_n$ generated by the elements $a_{i,j}$.

Proposition (Birman–Ko–Lee, 1997).— Let $\delta_n = \sigma_{n-1} \cdots \sigma_2 \sigma_1$. Then the family of all divisors of $\delta_n$ in $B_n^{++}$ is a Garside structure in $B_n$; it is bounded by $\delta_n$. 
• Chord representation of the Birman–Ko–Lee generators:
• Chord representation of the Birman–Ko–Lee generators:
Chord representation of the Birman–Ko–Lee generators:
Chord representation of the Birman–Ko–Lee generators:
• Chord representation of the Birman–Ko–Lee generators:

• **Lemma**: In terms of the BKL generators, $B_n$ is presented by the relations
- Chord representation of the Birman–Ko–Lee generators:

- Lemma: In terms of the BKL generators, $B_n$ is presented by the relations

\[
\begin{align*}
&\text{for disjoint chords,}
\end{align*}
\]
Chord representation of the Birman–Ko–Lee generators:

- **Lemma**: In terms of the BKL generators, $B_n$ is presented by the relations

\[
\begin{align*}
\cdot & = \cdot \\
\end{align*}
\]

for disjoint chords,
Chords

- Chord representation of the Birman–Ko–Lee generators:

- **Lemma**: In terms of the BKL generators, \( B_n \) is presented by the relations

\[
\begin{align*}
\cdot & = \cdot \\
\cdot & = \cdot \\
\cdot & = \cdot \\
\cdot & = \cdot 
\end{align*}
\]

for disjoint chords,
• Chord representation of the Birman–Ko–Lee generators:

• **Lemma**: In terms of the BKL generators, $B_n$ is presented by the relations

\[
\begin{align*}
\cdot & = \cdot \\
\cdot & = \cdot \\
\cdot & = \cdot \\
\end{align*}
\]

for disjoint chords,

\[
\begin{align*}
\cdot & = \cdot \\
\cdot & = \cdot \\
\end{align*}
\]

for adjacent chords enumerated in clockwise order.
Chords

- Chord representation of the Birman–Ko–Lee generators:

- **Lemma**: In terms of the BKL generators, $B_n$ is presented by the relations
  
  - $\cdot \cdot = \cdot \cdot$ for disjoint chords,
  - $\cdot \cdot = \cdot \cdot = \cdot \cdot$ for adjacent chords enumerated in clockwise order.

- **Hence**: For $P$ a $p$-gon, can define $a_P$ to be the product of the $a_{i,j}$ corresponding to $p-1$ adjacent edges of $P$ in clockwise order;
• Chord representation of the Birman–Ko–Lee generators:

- Lemma: In terms of the BKL generators, $B_n$ is presented by the relations
  
  \[
  \begin{align*}
  &\cdot = \cdot \\
  &\cdot = \cdot = \cdot \\
  \end{align*}
  \]
  
  for disjoint chords,

  \[
  \begin{align*}
  &\cdot = \cdot \\
  &\cdot = \cdot = \cdot = \cdot \\
  \end{align*}
  \]
  
  for adjacent chords enumerated in clockwise order.

• Hence: For $P$ a $p$-gon, can define $\alpha_P$ to be the product of the $a_{i,j}$ corresponding to $p-1$ adjacent edges of $P$ in clockwise order; \textit{idem} for an union of disjoint polygons.
• Chord representation of the Birman–Ko–Lee generators:

- **Lemma**: In terms of the BKL generators, $B_n$ is presented by the relations

\[
\begin{align*}
&= & \\
&= & \\
&= & \\
&= & \\
&= & \\
&= & \\
\end{align*}
\]

for disjoint chords,

for adjacent chords enumerated in clockwise order.

• Hence: For $P$ a $p$-gon, can define $a_P$ to be the product of the $a_{i,j}$ corresponding to $p-1$ adjacent edges of $P$ in clockwise order; *idem* for an union of disjoint polygons.
Proposition (Bessis–Digne–Michel).— The elements of the Garside structure $S_n^*$
• Proposition (Bessis–Digne–Michel).— The elements of the Garside structure $S_n^*$ (divisors of $\delta_n$ in $B_{n^*}^+$)
• **Proposition (Bessis–Digne–Michel).** — The elements of the Garside structure $S_n^*$ (divisors of $\delta_n$ in $B_n^{++*}$) are the elements $a_P$ with $P$ a union of disjoint polygons with $n$ vertices,
• **Proposition (Bessis–Digne–Michel).**— The elements of the Garside structure $S_n^*$ (divisors of $\delta_n$ in $B_n^{++}$) are the elements $a_P$ with $P$ a union of disjoint polygons with $n$ vertices, hence in 1-1 correspondence with the $\text{Cat}_n$ noncrossing partitions of $\{1, ..., n\}$. 
• Proposition (Bessis–Digne–Michel).— The elements of the Garside structure $S_n^*$ (divisors of $\delta_n$ in $B_n^{++*}$) are the elements $a_P$ with $P$ a union of disjoint polygons with $n$ vertices, hence in 1-1 correspondence with the $\text{Cat}_n$ noncrossing partitions of $\{1, \ldots, n\}$.

▶ notation $a_\lambda$ for $\lambda$ a noncrossing partition
Proposition (Bessis–Digne–Michel).— The elements of the Garside structure $S_n^*$ (divisors of $\delta_n$ in $B_n^{++*}$) are the elements $a_P$ with $P$ a union of disjoint polygons with $n$ vertices, hence in 1-1 correspondence with the $\text{Cat}_n$ noncrossing partitions of $\{1, \ldots, n\}$.

- notation $a_\lambda$ for $\lambda$ a noncrossing partition

Examples:

- $\{\{1\}, \{2, 8\}, \{3, 5, 6\}, \{4\}, \{7\}\}$
• Proposition (Bessis–Digne–Michel).— The elements of the Garside structure $S_n^*$ (divisors of $\delta_n$ in $B_n^{++*}$) are the elements $a_P$ with $P$ a union of disjoint polygons with $n$ vertices, hence in 1-1 correspondence with the $\text{Cat}_n$ noncrossing partitions of $\{1, \ldots, n\}$.

► notation $a_\lambda$ for $\lambda$ a noncrossing partition

• Examples:

► $\{\{1\}, \{2, 8\}, \{3, 5, 6\}, \{4\}, \{7\}\}$ ↔

\[ \begin{array}{c}
1 & 2 \\
3 & 4 \\
5 & 6 \\
7 & 8 \\
\end{array} \]
• **Proposition (Bessis–Digne–Michel).**— The elements of the Garside structure $S_n^*$ (divisors of $\delta_n$ in $B_n^+^*$) are the elements $a_P$ with $P$ a union of disjoint polygons with $n$ vertices, hence in 1-1 correspondence with the $\text{Cat}_n$ noncrossing partitions of $\{1, \ldots, n\}$.

- notation $a_\lambda$ for $\lambda$ a noncrossing partition

- Examples:

  - $\{\{1\}, \{2, 8\}, \{3, 5, 6\}, \{4\}, \{7\}\} \leftrightarrow a_{2,8}a_{3,5}a_{5,6}$
**Proposition (Bessis–Digne–Michel).**— The elements of the Garside structure $S^*_n$ (divisors of $\delta_n$ in $B_{n}^{++*}$) are the elements $a_P$ with $P$ a union of disjoint polygons with $n$ vertices, hence in 1-1 correspondence with the $\text{Cat}_n$ noncrossing partitions of $\{1, \ldots, n\}$.

- notation $a_\lambda$ for $\lambda$ a noncrossing partition

**Examples:**

- $\{\{1\}, \{2, 8\}, \{3, 5, 6\}, \{4\}, \{7\}\} \leftrightarrow \begin{array}{c} \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} \\ \begin{array}{c} \{2, 8\} \\ \{3, 5, 6\} \\ \{4\} \\ \{7\} \end{array} \end{array} \leftrightarrow a_{2,8} a_{3,5} a_{5,6}$

- $\{\{1, 2, 3, 4, 5, 6, 7, 8\}\}$
• Proposition (Bessis–Digne–Michel).— The elements of the Garside structure $S_n^*$ (divisors of $\delta_n$ in $B_n^{++}$) are the elements $a_P$ with $P$ a union of disjoint polygons with $n$ vertices, hence in 1-1 correspondence with the Cat$_n$ noncrossing partitions of $\{1, \ldots, n\}$.

- notation $a_\lambda$ for $\lambda$ a noncrossing partition

• Examples:

- $\{\{1\}, \{2, 8\}, \{3, 5, 6\}, \{4\}, \{7\}\} \leftrightarrow \begin{array}{c}
1 & 2 \\
7 & 8
\end{array} \leftrightarrow a_{2,8} a_{3,5} a_{5,6}$

- $\{\{1, 2, 3, 4, 5, 6, 7, 8\}\} \leftrightarrow \begin{array}{c}
1 & 2 \\
7
\end{array}$
• Proposition (Bessis–Digne–Michel).— The elements of the Garside structure $S_n^*$ (divisors of $\delta_n$ in $B_n^{++}$) are the elements $a_P$ with $P$ a union of disjoint polygons with $n$ vertices, hence in 1-1 correspondence with the $\text{Cat}_n$ noncrossing partitions of $\{1, \ldots, n\}$.

- notation $a_\lambda$ for $\lambda$ a noncrossing partition

• Examples:

- $\{\{1\}, \{2, 8\}, \{3, 5, 6\}, \{4\}, \{7\}\} \leftrightarrow \begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array} \leftrightarrow a_{2,8} a_{3,5} a_{5,6}$

- $\{\{1, 2, 3, 4, 5, 6, 7, 8\}\} \leftrightarrow \begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8
\end{array} \leftrightarrow \delta_8 = a_{12} a_{23} \cdots a_{78}$
• Proposition (Bessis–Digne–Michel).— The elements of the Garside structure $S_n^*$ (divisors of $\delta_n$ in $B_n^{++}$) are the elements $a_P$ with $P$ a union of disjoint polygons with $n$ vertices, hence in 1-1 correspondence with the $\text{Cat}_n$ noncrossing partitions of $\{1, \ldots, n\}$.

  ▶ notation $a_\lambda$ for $\lambda$ a noncrossing partition

• Examples:

  ▶ $\{\{1\}, \{2, 8\}, \{3, 5, 6\}, \{4\}, \{7\}\} \leftrightarrow \begin{array}{c}
\begin{tikzpicture}
\foreach \x in {1,2,3,4,5,6,7,8}
\node at (90 - \x * 45:1) {$\x$};
\draw (1) -- (2); \draw (2) -- (3); \draw (3) -- (4); \draw (4) -- (5); \draw (5) -- (6); \draw (6) -- (7); \draw (7) -- (8); \draw (8) -- (1);
\end{tikzpicture}
\end{array} \leftrightarrow a_{2,8} a_{3,5} a_{5,6}$

  ▶ $\{\{1, 2, 3, 4, 5, 6, 7, 8\}\} \leftrightarrow 7 \leftrightarrow \delta_8 = a_{12} a_{23} \cdots a_{78}$

• Remark: The permutation of the braid $a_\lambda$ is the permutation associated with $\lambda$ (product of cycles of the parts)
• **Question:** Determine $N_{n,\ell}^{B KL} := \#\{\beta \in B_n^+ | \|\beta\|^B KL = \ell\}$ and its generating series, where $\|\beta\|^B KL :=$ length of the $S_n^*$-normal decomposition of $\beta$. 
• **Question:** Determine $N_{n,\ell}^{BKL^+} := \#\{\beta \in B_n^+ | \|\beta\|^BKL = \ell\}$ and its generating series, where $\|\beta\|^BKL :=$ length of the $S_n^*$-normal decomposition of $\beta$.

• For instance: $N_{n,1}^{BKL^+} = \#S_n^* = \text{Cat}_n$. 
• **Question:** Determine \( N_{n, \ell}^{BKL^+} := \#\{ \beta \in B_n^+ | \|\beta\|^{BKL} = \ell \} \) and its generating series, where \( \|\beta\|^{BKL} := \) length of the \( S_n^* \)-normal decomposition of \( \beta \).

• For instance: \( N_{n, 1}^{BKL^+} = \# S_n^* = \text{Cat}_n \).

• Exactly similar to the classical case: local property, etc.
• **Question**: Determine $N_{n, \ell}^{BKL} := \# \{ \beta \in B_n^+ \mid \|\beta\|^{BKL} = \ell \}$ and its generating series, where $\|\beta\|^{BKL} := \text{length of the } S_n^* \text{-normal decomposition of } \beta$.

• For instance: $N_{n,1}^{BKL} = \# S_n^* = \text{Cat}_n$.

• Exactly similar to the classical case: *local* property, etc.

---

• **Proposition.**— Let $M_n^*$ be the $\text{Cat}_n \times \text{Cat}_n$ matrix indexed by noncrossing partitions s.t. 
\[
(M_n^*)_{\lambda, \mu} = \begin{cases} 
1 & \text{if } (a_\lambda, a_\mu) \text{ is } S_n^* \text{-normal}, \\
0 & \text{otherwise.}
\end{cases}
\]
• **Question**: Determine \( N_{n,\ell}^{BKL} := \# \{ \beta \in B_n^+ \mid \beta^{BKL} = \ell \} \) and its generating series, where \( \beta^{BKL} := \text{length of the } S_n^*\text{-normal decomposition of } \beta \).

• For instance: \( N_{n,1}^{BKL} = \# S_n^* = \text{Cat}_n \).

• Exactly similar to the classical case: local property, etc.

---

• **Proposition.**— Let \( M_n^* \) be the \( \text{Cat}_n \times \text{Cat}_n \) matrix indexed by noncrossing partitions s.t. \( (M_n^*)_{\lambda,\mu} = \begin{cases} 1 & \text{if } (a_{\lambda}, a_{\mu}) \text{ is } S_n^*\text{-normal}, \\ 0 & \text{otherwise.} \end{cases} \) Then \( N_{n,\ell}^{BKL} \) is the \( 1_n \text{th entry in } (1, \ldots, 1) \cdot M_n^* \ell. \)
• **Question:** Determine $N_{n,\ell}^{\text{BKL}+} := \#\{\beta \in B_{n}^+ \mid \|\beta\|^{\text{BKL}} = \ell\}$ and its generating series, where $\|\beta\|^{\text{BKL}} := \text{length of the } S_n^*\text{-normal decomposition of } \beta$.

• For instance: $N_{n,1}^{\text{BKL}+} = \#S_n^* = \text{Cat}_n$.

• Exactly similar to the classical case: *local* property, etc.

• **Proposition.**— Let $M_n^*$ be the $\text{Cat}_n \times \text{Cat}_n$ matrix indexed by noncrossing partitions s.t. $\left(M_n^*\right)_{\lambda,\mu} = \begin{cases} 1 & \text{if } (a_\lambda, a_\mu) \text{ is } S_n^*\text{-normal}, \\ 0 & \text{otherwise}. \end{cases}$ Then $N_{n,\ell}^{\text{BKL}+}$ is the $1_n$th entry in $(1, \ldots, 1) \cdot M_n^* \ell$.

  • For every $n$, the generating series of $N_{n,\ell}^{\text{BKL}+}$ is rational.
• When is \((a_\lambda, a_\mu)\) \(S_n^*\)-normal?
The normality relation

- When is \((a_\lambda, a_\mu) \ S^*_n\)-normal?

- Recall: If a Garside structure \(S\) is bounded by \(\Delta\), then \((s, t)\) is \(S\)-normal iff \(\partial s\) and \(t\) have no nontrivial common left-divisor.
• When is \((a_\lambda, a_\mu) S^*_n\)-normal?

• Recall: If a Garside structure \(S\) is bounded by \(\Delta\), then \((s, t)\) is \(S\)-normal iff \(\partial s\) and \(t\) have no nontrivial common left-divisor.

the element \(s'\) s.t. \(ss' = \Delta\)
• When is \((a_\lambda, a_\mu)\) \(S_n^*\)-normal?

• Recall: If a Garside structure \(S\) is bounded by \(\Delta\), then \((s, t)\) is \(S\)-normal iff \(\partial s\) and \(t\) have no nontrivial common left-divisor.
  
  ▶ When does \(a_{i,j}\) left-divide \(a_\lambda\)?
• When is \((a_\lambda, a_\mu) S^n_\ast\)-normal?

• Recall: If a Garside structure \(S\) is bounded by \(\Delta\), then \((s, t)\) is \(S\)-normal iff \(\partial s\) and \(t\) have no nontrivial common left-divisor.
  
  ▶ When does \(a_{i,j}\) left-divide \(a_\lambda\)?
  
  ▶ What is the partition of \(\partial a_\lambda\) in terms of that of \(a_\lambda\)?

\[\uparrow\text{the element } s' \text{ s.t. } ss' = \Delta\]
The normality relation

- When is \((a_\lambda, a_\mu) S^*_n\)-normal?

- Recall: If a Garside structure \(S\) is bounded by \(\Delta\), then \((s, t)\) is \(S\)-normal iff \(\partial s\) and \(t\) have no nontrivial common left-divisor.
  - When does \(a_{i,j}\) left-divide \(a_\lambda\)?
  - What is the partition of \(\partial a_\lambda\) in terms of that of \(a_\lambda\)?

- **Lemma (Bessis–Digne–Michel):** The element \(a_{i,j}\) left- (or right-) divides \(a_\lambda\) iff the chord \((i, j)\) is included in the polygon of \(\lambda\).
The normality relation

- When is \( (a_\lambda, a_\mu) S^*_n \)-normal?

- Recall: If a Garside structure \( S \) is bounded by \( \Delta \), then \((s, t)\) is \( S \)-normal iff \( \partial s \) and \( t \) have no nontrivial common left-divisor.
  - When does \( a_{i,j} \) left-divide \( a_\lambda \)?
  - What is the partition of \( \partial a_\lambda \) in terms of that of \( a_\lambda \)?

- **Lemma (Bessis–Digne–Michel):** The element \( a_{i,j} \) left- (or right-) divides \( a_\lambda \) iff the chord \((i, j)\) is included in the polygon of \( \lambda \).

- **Lemma (Bessis–Digne–Michel):** The partition of \( \partial a_\lambda \) is the Kreweras complement \( \overline{\lambda} \) of \( \lambda \).
The normality relation

- When is \((a_\lambda, a_\mu)\) \(S_n^*\)-normal?

- Recall: If a Garside structure \(S\) is bounded by \(\Delta\), then \((s, t)\) is \(S\)-normal iff \(\partial s\) and \(t\) have no nontrivial common left-divisor.
  
  - When does \(a_{i,j}\) left-divide \(a_\lambda\)?
  - What is the partition of \(\partial a_\lambda\) in terms of that of \(a_\lambda\)?

- **Lemma (Bessis–Digne–Michel):** The element \(a_{i,j}\) left- (or right-) divides \(a_\lambda\) iff the chord \((i, j)\) is included in the polygon of \(\lambda\).

- **Lemma (Bessis–Digne–Michel):** The partition of \(\partial a_\lambda\) is the Kreweras complement \(\overline{\lambda}\) of \(\lambda\).
The normality relation

• When is \((a_\lambda, a_\mu) S^*_n\)-normal?

• Recall: If a Garside structure \(S\) is bounded by \(\Delta\), then \((s, t)\) is \(S\)-normal iff \(\partial s\) and \(t\) have no nontrivial common left-divisor.
  
  ▶ When does \(a_{i,j}\) left-divide \(a_\lambda\)?
  
  ▶ What is the partition of \(\partial a_\lambda\) in terms of that of \(a_\lambda\)?

• **Lemma (Bessis–Digne–Michel):** The element \(a_{i,j}\) left- (or right-) divides \(a_\lambda\) iff the chord \((i, j)\) is included in the polygon of \(\lambda\).

• **Lemma (Bessis–Digne–Michel):** The partition of \(\partial a_\lambda\) is the Kreweras complement \(\overline{\lambda}\) of \(\lambda\).
The normality relation

- When is \((a_\lambda, a_\mu) S^*_n\)-normal?

- Recall: If a Garside structure \(S\) is bounded by \(\Delta\), then \((s, t)\) is \(S\)-normal iff \(\partial s\) and \(t\) have no nontrivial common left-divisor.
  - When does \(a_{i,j}\) left-divide \(a_\lambda\)?
  - What is the partition of \(\partial a_\lambda\) in terms of that of \(a_\lambda\)?

- **Lemma (Bessis–Digne–Michel):** The element \(a_{i,j}\) left- (or right-) divides \(a_\lambda\) iff the chord \((i, j)\) is included in the polygon of \(\lambda\).

- **Lemma (Bessis–Digne–Michel):** The partition of \(\partial a_\lambda\) is the Kreweras complement \(\overline{\lambda}\) of \(\lambda\).

![Diagram](image-url)
• When is \((a_\lambda, a_\mu) \cdot S^*_n\)-normal?

• Recall: If a Garside structure \(S\) is bounded by \(\Delta\), then \((s, t)\) is \(S\)-normal iff \(\partial s\) and \(t\) have no nontrivial common left-divisor.
  - When does \(a_{i,j}\) left-divide \(a_\lambda\)?
  - What is the partition of \(\partial a_\lambda\) in terms of that of \(a_\lambda\)?

• **Lemma (Bessis–Digne–Michel):** The element \(a_{i,j}\) left- (or right-) divides \(a_\lambda\) iff the chord \((i, j)\) is included in the polygon of \(\lambda\).

• **Lemma (Bessis–Digne–Michel):** The partition of \(\partial a_\lambda\) is the Kreweras complement \(\overline{\lambda}\) of \(\lambda\).
The normality relation

- When is \((a_\lambda, a_\mu) S^*_n\)-normal?

- Recall: If a Garside structure \(S\) is bounded by \(\Delta\), then \((s, t)\) is \(S\)-normal iff \(\partial s\) and \(t\) have no nontrivial common left-divisor.
  - When does \(a_{i,j}\) left-divide \(a_\lambda\)?
  - What is the partition of \(\partial a_\lambda\) in terms of that of \(a_\lambda\)?

**Lemma (Bessis–Digne–Michel):** The element \(a_{i,j}\) left- (or right-) divides \(a_\lambda\) iff the chord \((i, j)\) is included in the polygon of \(\lambda\).

**Lemma (Bessis–Digne–Michel):** The partition of \(\partial a_\lambda\) is the Kreweras complement \(\overline{\lambda}\) of \(\lambda\).
• **Proposition (Biane).** — The generating series $G(z)$ of $\mathcal{N}_{n,2}^{\text{BKL}^+}$ is derived from the generating series $F(z)$ of $\text{Cat}_n^2$ by

$$G(z) = F(zG(z)).$$

(♯)
• **Proposition (Biane).**— The generating series $G(z)$ of $N_{n,2}^{BKL+}$ is derived from the generating series $F(z)$ of $\text{Cat}_n^2$ by

$$G(z) = F(zG(z)).$$

(#)

• Proof:
  
  ▶ Let $G(z) = \sum_n N_{n,2}^{BKL+} z^n$. 

• **Proposition (Biane).**— The generating series $G(z)$ of $N_{n,2}^{BKL+}$ is derived from the generating series $F(z)$ of $\text{Cat}_n^2$ by

$$G(z) = F(zG(z)).$$

(#)

• **Proof:**
  - Let $G(z) = \sum_n N_{n,2}^{BKL+} z^n$,
    with $N_{n,2}^{BKL+} = \# \text{ length 2 normal sequences}$
• Proposition (Biane).— The generating series $G(z)$ of $N_{n,2}^{BKL^+}$ is derived from the generating series $F(z)$ of $\text{Cat}_n^2$ by

$$G(z) = F(zG(z)).$$

(\#)

• Proof:
  ▶ Let $G(z) = \sum_n N_{n,2}^{BKL^+} z^n$,
  
  with $N_{n,2}^{BKL^+} = \# \text{ length 2 normal sequences} = \# \text{ positive entries in } M_n^*$. 
• **Proposition (Biane).**— The generating series $G(z)$ of $N_{n,2}^{BKL+}$ is derived from the generating series $F(z)$ of $\text{Cat}_n^2$ by

$$G(z) = F(zG(z)).$$

(###)

• **Proof:**
  - Let $G(z) = \sum_n N_{n,2}^{BKL+} z^n$,
    with $N_{n,2}^{BKL+} = \# \text{ length 2 normal sequences} = \# \text{ positive entries in } M_n^\ast$.
  - From what we saw: $(M_n^\ast)_{\lambda,\mu} = 1$ iff $\overline{\lambda} \land \mu = 0_n$. 
• **Proposition (Biane).**— The generating series $G(z)$ of $N_{n,2}^{BKL+}$ is derived from the generating series $F(z)$ of $\text{Cat}_n^2$ by
\[ G(z) = F(zG(z)). \]

• **Proof:**
  ▶ Let $G(z) = \sum_n N_{n,2}^{BKL+} z^n$, with $N_{n,2}^{BKL+} = \# \text{ length 2 normal sequences} = \# \text{ positive entries in } M_n^*$.  
  ▶ From what we saw: $(M_n^*)_{\lambda,\mu} = 1$ iff $\overline{\lambda} \wedge \mu = 0_n$. As $\lambda \rightarrow \overline{\lambda}$ is a bijection, one has also $N_{n,2}^{BKL+} = \#\{(\lambda, \mu) \in (\text{NC}_n)^2 \mid \lambda \lor \mu = 1_n\}$. 
• Proposition (Biane).— The generating series $G(z)$ of $N_{n,2}^{\text{BKL}^+}$ is derived from the generating series $F(z)$ of $\text{Cat}_n^2$ by
$$G(z) = F(zG(z)).$$  (#)

• Proof:
  ▶ Let $G(z) = \sum_n N_{n,2}^{\text{BKL}^+} z^n$,
    with $N_{n,2}^{\text{BKL}^+} = \#$ length 2 normal sequences $= \#$ positive entries in $M_n^*$.

  ▶ From what we saw: $(M_n^*)_{\lambda,\mu} = 1$ iff $\overline{\lambda} \land \mu = 0_n$. As $\lambda \rightarrow \overline{\lambda}$ is a bijection, one has also $N_{n,2}^{\text{BKL}^+} = \#\{(\lambda, \mu) \in (\text{NC}_n)^2 \mid \lambda \lor \mu = 1_n\}$.

  ▶ The number $N_{n,2}^{\text{BKL}^+}$ is the $n$th free cumulant of $X_1^2X_2^2$ where $X_1, X_2$ are independent free random variables of variance 1.
• Proposition (Biane).— The generating series $G(z)$ of $N_{n,2}^{\text{BKL}+}$ is derived from the generating series $F(z)$ of $\text{Cat}_n^2$ by

$$G(z) = F(zG(z)).$$

(\#)

• Proof:

Let $G(z) = \sum_n N_{n,2}^{\text{BKL}+} z^n,$

with $N_{n,2}^{\text{BKL}+} = \#$ length 2 normal sequences $= \#$ positive entries in $\text{M}_n^*.$

From what we saw: $(\text{M}_n^*)_{\lambda,\mu} = 1$ iff $\overline{\lambda} \land \mu = 0_n.$ As $\lambda \rightarrow \overline{\lambda}$ is a bijection, one has also $N_{n,2}^{\text{BKL}+} = \#\{(\lambda, \mu) \in (\text{NC}_n)^2 | \lambda \lor \mu = 1_n\}.$

The number $N_{n,2}^{\text{BKL}+}$ is the $n$th free cumulant of $X_1^2 X_2^2$

where $X_1, X_2$ are independent free random variables of variance 1.

Hence connected to the g.f. $F$ of pairs of noncrossing partitions under (\#). \qed
- First values:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N^{BKL+}_{2,d}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### First values:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_{BKL+}^{2,d}$</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>$N_{BKL+}^{3,d}$</td>
<td>5</td>
<td>15</td>
<td>83</td>
<td>177</td>
<td>367</td>
<td>749</td>
<td>1 515</td>
</tr>
</tbody>
</table>
**First values:**

<table>
<thead>
<tr>
<th>( d )</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>( N_{BKL+}^{2,d} )</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>( N_{BKL+}^{3,d} )</td>
<td>5</td>
<td>15</td>
<td>83</td>
<td>177</td>
<td>367</td>
<td>749</td>
<td>1 515</td>
</tr>
<tr>
<td>( N_{BKL+}^{4,d} )</td>
<td>14</td>
<td>99</td>
<td>556</td>
<td>2 856</td>
<td>14 122</td>
<td>68 927</td>
<td>334 632</td>
</tr>
</tbody>
</table>
## First values:

<table>
<thead>
<tr>
<th>d</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{BKL+}^{2,d}$</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>$N_{BKL+}^{3,d}$</td>
<td>5</td>
<td>15</td>
<td>83</td>
<td>177</td>
<td>367</td>
<td>749</td>
<td>1515</td>
</tr>
<tr>
<td>$N_{BKL+}^{4,d}$</td>
<td>14</td>
<td>99</td>
<td>556</td>
<td>2856</td>
<td>14122</td>
<td>68927</td>
<td>334632</td>
</tr>
<tr>
<td>$N_{BKL+}^{5,d}$</td>
<td>42</td>
<td>773</td>
<td>11124</td>
<td>147855</td>
<td>1917046</td>
<td>24672817</td>
<td></td>
</tr>
</tbody>
</table>
- **First values:**

<table>
<thead>
<tr>
<th>d</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{BKL+}^{2,d})</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>(N_{BKL+}^{3,d})</td>
<td>5</td>
<td>15</td>
<td>83</td>
<td>177</td>
<td>367</td>
<td>749</td>
<td>1 515</td>
</tr>
<tr>
<td>(N_{BKL+}^{4,d})</td>
<td>14</td>
<td>99</td>
<td>556</td>
<td>2 856</td>
<td>1 4122</td>
<td>68 927</td>
<td>334 632</td>
</tr>
<tr>
<td>(N_{BKL+}^{5,d})</td>
<td>42</td>
<td>773</td>
<td>11 124</td>
<td>1 478 55</td>
<td>1 917 046</td>
<td>24 672 817</td>
<td></td>
</tr>
<tr>
<td>(N_{BKL+}^{6,d})</td>
<td>132</td>
<td>6 743</td>
<td>266 944</td>
<td>9 845 829</td>
<td>356 470 124</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- First values:

<table>
<thead>
<tr>
<th>d</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>( N_{BKL+}^{2,d} )</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>( N_{BKL+}^{3,d} )</td>
<td>5</td>
<td>15</td>
<td>83</td>
<td>177</td>
<td>367</td>
<td>749</td>
<td>1 515</td>
</tr>
<tr>
<td>( N_{BKL+}^{4,d} )</td>
<td>14</td>
<td>99</td>
<td>556</td>
<td>2 856</td>
<td>14 122</td>
<td>68 927</td>
<td>334 632</td>
</tr>
<tr>
<td>( N_{BKL+}^{5,d} )</td>
<td>42</td>
<td>773</td>
<td>11 124</td>
<td>147 855</td>
<td>1 917 046</td>
<td>24 672 817</td>
<td></td>
</tr>
<tr>
<td>( N_{BKL+}^{6,d} )</td>
<td>132</td>
<td>6 743</td>
<td>266 944</td>
<td>9 845 829</td>
<td>356 470 124</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Questions** about columns *(OK for \( d \leq 2 \)):
Questions

- First values:

<table>
<thead>
<tr>
<th>d</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{BKL+}^{2,d}</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>N_{BKL+}^{3,d}</td>
<td>5</td>
<td>15</td>
<td>83</td>
<td>177</td>
<td>367</td>
<td>749</td>
<td>1 515</td>
</tr>
<tr>
<td>N_{BKL+}^{4,d}</td>
<td>14</td>
<td>99</td>
<td>556</td>
<td>2 856</td>
<td>14 122</td>
<td>68 927</td>
<td>334 632</td>
</tr>
<tr>
<td>N_{BKL+}^{5,d}</td>
<td>42</td>
<td>773</td>
<td>11 124</td>
<td>147 855</td>
<td>1 917 046</td>
<td>24 672 817</td>
<td></td>
</tr>
<tr>
<td>N_{BKL+}^{6,d}</td>
<td>132</td>
<td>6 743</td>
<td>266 944</td>
<td>9 845 829</td>
<td>356 470 124</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Questions about columns (OK for d \leq 2):
  - What is the behaviour of $N_{n,3}^{BKL+}$, etc.?
### Questions

- **First values:**

<table>
<thead>
<tr>
<th>$d$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{2,d}^{BKL^+}$</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>$N_{3,d}^{BKL^+}$</td>
<td>5</td>
<td>15</td>
<td>83</td>
<td>177</td>
<td>367</td>
<td>749</td>
<td>1 515</td>
</tr>
<tr>
<td>$N_{4,d}^{BKL^+}$</td>
<td>14</td>
<td>99</td>
<td>556</td>
<td>2 856</td>
<td>14 122</td>
<td>68 927</td>
<td>334 632</td>
</tr>
<tr>
<td>$N_{5,d}^{BKL^+}$</td>
<td>42</td>
<td>773</td>
<td>11 124</td>
<td>147 855</td>
<td>1 917 046</td>
<td>24 672 817</td>
<td></td>
</tr>
<tr>
<td>$N_{6,d}^{BKL^+}$</td>
<td>132</td>
<td>6 743</td>
<td>266 944</td>
<td>9 845 829</td>
<td>356 470 124</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Questions about columns** *(OK for $d \leq 2$):*
  - What is the behaviour of $N_{n,3}^{BKL^+}$, etc.?

- **Questions about rows** *(OK for $n \leq 3$):*
- **First values:**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{2,d}^{BKL+}$</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>$N_{3,d}^{BKL+}$</td>
<td>5</td>
<td>15</td>
<td>83</td>
<td>177</td>
<td>367</td>
<td>749</td>
<td>1 515</td>
</tr>
<tr>
<td>$N_{4,d}^{BKL+}$</td>
<td>14</td>
<td>99</td>
<td>556</td>
<td>2 856</td>
<td>14 122</td>
<td>68 927</td>
<td>334 632</td>
</tr>
<tr>
<td>$N_{5,d}^{BKL+}$</td>
<td>42</td>
<td>773</td>
<td>11 124</td>
<td>147 855</td>
<td>1 917 046</td>
<td>24 672 817</td>
<td></td>
</tr>
<tr>
<td>$N_{6,d}^{BKL+}$</td>
<td>132</td>
<td>6 743</td>
<td>266 944</td>
<td>9 845 829</td>
<td>356 470 124</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Questions about columns (OK for $d \leq 2$):**
  - What is the behaviour of $N_{n,3}^{BKL+}$, etc.?

- **Questions about rows (OK for $n \leq 3$):**
  - Can one reduce the size of $M_n^*$?
• First values:

<table>
<thead>
<tr>
<th>d</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{2,d}^{BKL+}$</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>$N_{3,d}^{BKL+}$</td>
<td>5</td>
<td>15</td>
<td>83</td>
<td>177</td>
<td>367</td>
<td>749</td>
<td>1 515</td>
</tr>
<tr>
<td>$N_{4,d}^{BKL+}$</td>
<td>14</td>
<td>99</td>
<td>556</td>
<td>2 856</td>
<td>14 122</td>
<td>68 927</td>
<td>334 632</td>
</tr>
<tr>
<td>$N_{5,d}^{BKL+}$</td>
<td>42</td>
<td>773</td>
<td>11 124</td>
<td>147 855</td>
<td>1 917 046</td>
<td>24 672 817</td>
<td></td>
</tr>
<tr>
<td>$N_{6,d}^{BKL+}$</td>
<td>132</td>
<td>6 743</td>
<td>266 944</td>
<td>9 845 829</td>
<td>356 470 124</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• **Questions** about columns (OK for $d \leq 2$):
  ▶ What is the behaviour of $N_{n,3}^{BKL+}$, etc.?

• **Questions** about rows (OK for $n \leq 3$):
  ▶ Can one reduce the size of $M_n^*$?
  ▶ Is $M_n^*$ always invertible?
Questions

• First values:

<table>
<thead>
<tr>
<th>d</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{2,d}^{BKL+}$</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>$N_{3,d}^{BKL+}$</td>
<td>5</td>
<td>15</td>
<td>83</td>
<td>177</td>
<td>367</td>
<td>749</td>
<td>1515</td>
</tr>
<tr>
<td>$N_{4,d}^{BKL+}$</td>
<td>14</td>
<td>99</td>
<td>556</td>
<td>2856</td>
<td>14122</td>
<td>68927</td>
<td>334632</td>
</tr>
<tr>
<td>$N_{5,d}^{BKL+}$</td>
<td>42</td>
<td>773</td>
<td>11124</td>
<td>147855</td>
<td>1917046</td>
<td>24672817</td>
<td></td>
</tr>
<tr>
<td>$N_{6,d}^{BKL+}$</td>
<td>132</td>
<td>6743</td>
<td>266944</td>
<td>9845829</td>
<td>356470124</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Questions about columns (OK for $d \leq 2$):
  ► What is the behaviour of $N_{n,3}^{BKL+}$, etc.?

• Questions about rows (OK for $n \leq 3$):
  ► Can one reduce the size of $M_n^*$?
  ► Is $M_n^*$ always invertible?
  ► What is the asymptotic behaviour of the spectral radius of $M_n^*$?
**Questions**

- **First values:**

<table>
<thead>
<tr>
<th>(d)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{B KL +}^{2, d})</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>(N_{B KL +}^{3, d})</td>
<td>5</td>
<td>15</td>
<td>83</td>
<td>177</td>
<td>367</td>
<td>749</td>
<td>1 515</td>
</tr>
<tr>
<td>(N_{B KL +}^{4, d})</td>
<td>14</td>
<td>99</td>
<td>556</td>
<td>2 856</td>
<td>14 122</td>
<td>68 927</td>
<td>334 632</td>
</tr>
<tr>
<td>(N_{B KL +}^{5, d})</td>
<td>42</td>
<td>773</td>
<td>11 124</td>
<td>147 855</td>
<td>1 917 046</td>
<td>24 672 817</td>
<td></td>
</tr>
<tr>
<td>(N_{B KL +}^{6, d})</td>
<td>132</td>
<td>6 743</td>
<td>266 944</td>
<td>9 845 829</td>
<td>356 470 124</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Questions** about columns (OK for \(d \leq 2\)):
  - What is the behaviour of \(N_{n, 3}^{B KL +}\), etc.?

- **Questions** about rows (OK for \(n \leq 3\)):
  - Can one reduce the size of \(M_n^*\)?
  - Is \(M_n^*\) always invertible?
  - What is the asymptotic behaviour of the spectral radius of \(M_n^*\)?

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{tr}(M_n^*))</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>42</td>
<td>132</td>
<td>429</td>
</tr>
</tbody>
</table>
Questions

- **First values:**

<table>
<thead>
<tr>
<th>d</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{2,d}^{BKL+})</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>(N_{3,d}^{BKL+})</td>
<td>5</td>
<td>15</td>
<td>83</td>
<td>177</td>
<td>367</td>
<td>749</td>
<td>1515</td>
</tr>
<tr>
<td>(N_{4,d}^{BKL+})</td>
<td>14</td>
<td>99</td>
<td>556</td>
<td>2856</td>
<td>14122</td>
<td>68927</td>
<td>334632</td>
</tr>
<tr>
<td>(N_{5,d}^{BKL+})</td>
<td>42</td>
<td>773</td>
<td>11124</td>
<td>147855</td>
<td>1917046</td>
<td>24672817</td>
<td></td>
</tr>
<tr>
<td>(N_{6,d}^{BKL+})</td>
<td>132</td>
<td>6743</td>
<td>266944</td>
<td>9845829</td>
<td>356470124</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Questions** about columns (OK for \(d \leq 2\)):
  - What is the behaviour of \(N_{n,3}^{BKL+}\), etc.?

- **Questions** about rows (OK for \(n \leq 3\)):
  - Can one reduce the size of \(M_n^*\)?
  - Is \(M_n^*\) always invertible?
  - What is the asymptotic behaviour of the spectral radius of \(M_n^*\)?

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{tr}(M_n^*))</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>42</td>
<td>132</td>
<td>429</td>
</tr>
<tr>
<td>(\text{det}(M_n^*))</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2^{4.5}</td>
<td>2^{16.5^{5.7}}</td>
<td>2^{6^{3.5^{21.7^7}}}</td>
<td>2^{2^{47.3^{8.5^{84.7^{35.11}}}}}</td>
</tr>
</tbody>
</table>
Questions

- First values:

<table>
<thead>
<tr>
<th>d</th>
<th>(N_{2,d}^{BKL+})</th>
<th>(N_{3,d}^{BKL+})</th>
<th>(N_{4,d}^{BKL+})</th>
<th>(N_{5,d}^{BKL+})</th>
<th>(N_{6,d}^{BKL+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>42</td>
<td>132</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>15</td>
<td>99</td>
<td>773</td>
<td>6 743</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>83</td>
<td>556</td>
<td>11 124</td>
<td>266 944</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>177</td>
<td>2 856</td>
<td>147 855</td>
<td>9 845 829</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>367</td>
<td>14 122</td>
<td>1 917 046</td>
<td>356 470 124</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>749</td>
<td>68 927</td>
<td>24 672 817</td>
<td></td>
</tr>
</tbody>
</table>

- Questions about columns (OK for \(d \leq 2\)):
  - What is the behaviour of \(N_{n,3}^{BKL+}\), etc.?

- Questions about rows (OK for \(n \leq 3\)):
  - Can one reduce the size of \(M_n^*\)?
  - Is \(M_n^*\) always invertible?
  - What is the asymptotic behaviour of the spectral radius of \(M_n^*\)?

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(tr(M_n^*))</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>42</td>
<td>132</td>
<td>429</td>
</tr>
<tr>
<td>(det(M_n^*))</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2(^4).5</td>
<td>2^{16}.5^{5}.7</td>
<td>2^{63}.3^{5}.2^{11}.7</td>
<td>2^{247}.3^{8}.5^{84}.7^{35}.11</td>
</tr>
<tr>
<td>(\rho(M_n^*))</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4.83...</td>
<td>12.83...</td>
<td>35.98...</td>
<td>104.87...</td>
</tr>
</tbody>
</table>
Whenever a group admits a finite Garside structure,
Whenever a group admits a finite Garside structure, there is a finite state automaton, whence an incidence matrix.
• Whenever a group admits a finite Garside structure, there is a finite state automaton, whence an incidence matrix.

• The associated combinatorics is likely to be interesting if the Garside structure is connected with combinatorially meaningful objects:
• Whenever a group admits a finite Garside structure, there is a finite state automaton, whence an incidence matrix.

• The associated combinatorics is likely to be interesting if the Garside structure is connected with combinatorially meaningful objects:
  permutations (Garside case),
• Whenever a group admits a finite Garside structure, there is a finite state automaton, whence an incidence matrix.

• The associated combinatorics is likely to be interesting if the Garside structure is connected with combinatorially meaningful objects: permutations (Garside case), noncrossing partitions (Birman–Ko–Lee case), etc.
• Whenever a group admits a finite Garside structure, there is a finite state automaton, whence an incidence matrix.

• The associated combinatorics is likely to be interesting if the Garside structure is connected with combinatorially meaningful objects: permutations (Garside case), noncrossing partitions (Birman–Ko–Lee case), etc.

• The family of group(oid)s that admit an interesting Garside structure is large and so far not well understood:
• Whenever a group admits a finite Garside structure, there is a finite state automaton, whence an incidence matrix.

• The associated combinatorics is likely to be interesting if the Garside structure is connected with combinatorially meaningful objects: permutations (Garside case), noncrossing partitions (Birman–Ko–Lee case), etc.

• The family of group(oid)s that admit an interesting Garside structure is large and so far not well understood:
  ► for instance (Bessis, 2006) free groups do;
• Whenever a group admits a finite Garside structure, there is a finite state automaton, whence an incidence matrix.

• The associated combinatorics is likely to be interesting if the Garside structure is connected with combinatorially meaningful objects: permutations (Garside case), noncrossing partitions (Birman–Ko–Lee case), etc.

• The family of groupoids that admit an interesting Garside structure is large and so far not well understood:
  ▶ for instance (Bessis, 2006) free groups do;
  ▶ also: exotic Garside structures on braid groups;
• Whenever a group admits a finite Garside structure, there is a finite state automaton, whence an incidence matrix.

• The associated combinatorics is likely to be interesting if the Garside structure is connected with combinatorially meaningful objects: permutations (Garside case), noncrossing partitions (Birman–Ko–Lee case), etc.

• The family of group(oid)s that admit an interesting Garside structure is large and so far not well understood:
  ▶ for instance (Bessis, 2006) free groups do;
  ▶ also: exotic Garside structures on braid groups;
  ▶ and exotic non-Garside normal forms with local characterizations;
• Whenever a group admits a finite Garside structure, there is a finite state automaton, whence an incidence matrix.

• The associated combinatorics is likely to be interesting if the Garside structure is connected with combinatorially meaningful objects: permutations (Garside case), noncrossing partitions (Birman–Ko–Lee case), etc.

• The family of group(oid)s that admit an interesting Garside structure is large and so far not well understood:
  ▶ for instance (Bessis, 2006) free groups do;
  ▶ also: exotic Garside structures on braid groups;
  ▶ and exotic non-Garside normal forms with local characterizations;
  ▶ most results involving braids extend to Artin–Tits groups of spherical type (i.e., associated with a finite Coxeter group);
• Whenever a group admits a finite Garside structure, there is a finite state automaton, whence an incidence matrix.

• The associated combinatorics is likely to be interesting if the Garside structure is connected with combinatorially meaningful objects: permutations (Garside case), noncrossing partitions (Birman–Ko–Lee case), etc.

• The family of group(oid)s that admit an interesting Garside structure is large and so far not well understood:
  ▶ for instance (Bessis, 2006) free groups do;
  ▶ also: exotic Garside structures on braid groups;
  ▶ and exotic non-Garside normal forms with local characterizations;
  ▶ most results involving braids extend to Artin–Tits groups of spherical type (i.e., associated with a finite Coxeter group);
  ▶ many potential combinatorial problems
• Whenever a group admits a finite Garside structure,
  there is a finite state automaton, whence an incidence matrix.

• The associated combinatorics is likely to be interesting if the Garside structure is
  connected with combinatorially meaningful objects:
    permutations (Garside case), noncrossing partitions (Birman–Ko–Lee case), etc.

• The family of group(oid)s that admit an interesting Garside structure is large and so
  far not well understood:
    ► for instance (Bessis, 2006) free groups do;
    ► also: exotic Garside structures on braid groups;
    ► and exotic non-Garside normal forms with local characterizations;
    ► most results involving braids extend to Artin–Tits groups of spherical type
      (i.e., associated with a finite Coxeter group);
      ► many potential combinatorial problems

• Specific case of dual braid monoids and noncrossing partitions:
    ► (almost) nothing known so far,
• Whenever a group admits a finite Garside structure, there is a finite state automaton, whence an incidence matrix.

• The associated combinatorics is likely to be interesting if the Garside structure is connected with combinatorially meaningful objects: permutations (Garside case), noncrossing partitions (Birman–Ko–Lee case), etc.

• The family of group(oid)s that admit an interesting Garside structure is large and so far not well understood:
  ▶ for instance (Bessis, 2006) free groups do;
  ▶ also: exotic Garside structures on braid groups;
  ▶ and exotic non-Garside normal forms with local characterizations;
  ▶ most results involving braids extend to Artin–Tits groups of spherical type (i.e., associated with a finite Coxeter group);
  ▶ many potential combinatorial problems

• Specific case of dual braid monoids and noncrossing partitions:
  ▶ (almost) nothing known so far,
  ▶ but the analogy $B^{+*}_n/B^+_n$ suggests that combinatorics could be interesting (?).
• J. Mairesse & F. Matheus, Growth series for Artin groups of dihedral type
• J. Mairesse & F. Matheus, Growth series for Artin groups of dihedral type

• P. Dehornoy, Combinatorics of normal sequences of braids,
• J. Mairesse & F. Matheus, Growth series for Artin groups of dihedral type

• P. Dehornoy, Combinatorics of normal sequences of braids,

• F. Hivert, J.-C. Novelli, J.-Y. Thibon, Sur une conjecture de Dehornoy
• **J. Mairesse & F. Matheus**, Growth series for Artin groups of dihedral type  

• **P. Dehornoy**, Combinatorics of normal sequences of braids,  

• **F. Hivert, J.-C. Novelli, J.-Y. Thibon**, Sur une conjecture de Dehornoy  

• **P. Dehornoy**, with **F. Digne, E. Godelle, D. Krammer, J. Michel**, Foundations of Garside Theory,  
  EMS Tracts in Mathematics (2015), www.math.unicaen.fr/~garside/
• J. Mairesse & F. Matheus, Growth series for Artin groups of dihedral type

• P. Dehornoy, Combinatorics of normal sequences of braids,

• F. Hivert, J.-C. Novelli, J.-Y. Thibon, Sur une conjecture de Dehornoy

• P. Dehornoy, with F. Digne, E. Godelle, D. Krammer, J. Michel, Foundations of

• L. Carlucci, P. Dehornoy, A. Weiermann, Unprovability statements involving braids;
• **J. Mairesse & F. Matheus**, Growth series for Artin groups of dihedral type

• **P. Dehornoy**, Combinatorics of normal sequences of braids,

• **F. Hivert, J.-C. Novelli, J.-Y. Thibon**, Sur une conjecture de Dehornoy

• **P. Dehornoy**, with **F. Digne, E. Godelle, D. Krammer, J. Michel**, Foundations of

• **L. Carlucci, P. Dehornoy, A. Weiermann**, Unprovability statements involving braids;

• **D. Bessis, F. Digne, J. Michel**, Springer theory in braid groups and the
  Birman-Ko-Lee monoid;

  www.math.unicaen.fr/~dehornoy