Isolated orderings on an orderable group

Patrick Dehornoy

• A simple scheme for constructing monoids in which left-divisibility is a linear ordering, connected with non-Noetherian Garside theory.

• Application: ordered groups whose space of orderings has an isolated point.
Plan:

1. The space of orderings of an orderable group
2. Right-triangular presentations
3. The case of braid groups
1. The space of orderings of an orderable group
2. Right-triangular presentations
3. The case of braid groups
• **Definition.**— A group G is **orderable** if there exists a linear ordering \leq on G that is left-invariant, that is, $g \leq h$ implies $fg \leq fh$ for all f, g, h.

• **Lemma.**— (i) If \leq is a left-invariant ordering on G, then $P := \{g \in G \mid g > 1\}$ is a subsemigroup of G s.t. $P, P^{-1}, \{1\}$ partition G. P : the positive cone of \leq. (ii) Conversely, if P is a subsemigroup of G s.t. $P, P^{-1}, \{1\}$ partition G, then $g^{-1}h \in P$ defines a left-invariant linear ordering on G.

• **Definition.**— A monoid M is of **right-O-type** if M is left-cancellative, has no nontrivial invertible element, and the left-divisibility relation \preceq is a linear ordering on M.

$$g \preceq h \iff \exists h' (gh' = h)$$

• **Lemma.**— (i) If \leq is a left-invariant ordering on G, then $\{g \in G \mid g > 1\}$ is a monoid of O-type. (ii) Conversely, if M is a monoid of O-type, then $g^{-1}h \in M \setminus \{1\}$ defines a left-invariant linear ordering on the enveloping group of M.

constructing orderable groups \iff constructing monoids of O-type
Definition.— For G orderable group,

$$LO(G) := \text{the family of all positive cones of left-invariant orderings on } G.$$

a subset of $\mathcal{P}(G)$

subsets of G

$\approx \{0, 1\}^G$, a compact totally disconnected space

Proposition (Sikora).— The set $LO(G)$ is a closed subspace of $\{0, 1\}^G \times G$.

Proof:
- P belongs to $LO(G)$ iff

 $$P^2 \subseteq P, \text{ and } P \cup P^{-1} \cup \{1\} = G \text{ and } P \cap P^{-1} = \emptyset \text{ and } 1 \notin P.$$

- P does not belong to $LO(G)$ iff $\exists g, h \ (g \in P \& h \in P \& gh \notin P)$ or...

- base of open sets

$$U_{g_1, \ldots, g_p h_1, \ldots, h_q} = \{X \subseteq G \mid g_1, \ldots, g_p \in X \& h_1, \ldots, h_q \notin X\}.$$

□
• If G is (finite or) countable, then $\mathcal{P}(G)$ is metrizable.

• Proposition (Linnel).— A space $LO(G)$ cannot be countably infinite.

• Corollary.— If G is countable and orderable, the space $LO(G)$ is
 - either finite,
 - or isomorphic to the Cantor space,
 - or isomorphic to a subspace of the Cantor space with isolated points.

• Examples:
 - $LO(\pi_1(\text{Klein bottle})) \ (= LO(\mathbb{Z} \times \mathbb{Z})))$ has 4 elements;
 - (Sikora) $LO(\mathbb{Z}^n)$ is a Cantor space;
 - (McCleary, Navas) $LO(F_n)$ is a Cantor space.

⇝ Can $LO(G)$ be infinite with isolated points?
• Lemma.— (i) A left-invariant ordering \leq of G is isolated iff exists a finite subset $\{g_1, \ldots, g_p\}$ of G s.t. \leq is the only left-invariant ordering with $1 < g_1, \ldots, 1 < g_p$.
 (ii) This is true in particular if the positive cone is finitely generated as a semigroup.

• Proof: (i) $\{P_{\leq}\} = U_{g_1, \ldots, g_p, \emptyset}$; (ii) if P_{\leq} is generated by $g_1, \ldots, g_p,$
 then every cone that contains g_1, \ldots, g_p includes P_{\leq}, hence is equal to P_{\leq}. □

• Proposition.— Assume that the group G admits a positive presentation $\langle S \mid R \rangle$ with
 S finite and $\langle S \mid R \rangle^+$ of O-type. Then the subsemigroup of G generated by S is the
 positive cone of an isolated left-invariant ordering of G.

• Example: $\mathbb{Z} \rtimes \mathbb{Z}$
 $\quad = \langle a, b \mid ab = b^{-1}a \rangle$
 $\quad = \langle a, b \mid a = bab \rangle$.
1. The space of orderings of an orderable group
2. Right-triangular presentations
3. The case of braid groups
Triangular presentations

• Goal: Constructing finitely generated monoids of O-type.

 Here: consider presentations of a certain simple syntactic type.

• **Definition.**— A (positive) presentation is **right-triangular** if there exists an enumeration (s_1, s_2, \ldots) of S such that R consists of relations $s_1 = s_2 w_2$, $s_2 = s_3 w_3$, ... $(w_2, w_3, \ldots$ words in $S)$.

• Example: $\langle a, b, c \mid a = bac, b = cba \rangle$ is right-triangular and **left-triangular**.

• **Key Lemma.**— If (S, R) is right-triangular, then TFAE
 (i) $\langle S \mid R \rangle^+$ is of right-O-type;
 (ii) any two elements of $\langle S \mid R \rangle^+$ admit a common right-multiple.

• Proof: Right-reversing is necessarily complete; it necessarily provides a \preceq-relation. □

 How to prove the existence of common right-multiples?
To prove that common right-multiples exist: find a (right-pre)-Garside element.

Lemma.— Assume that M is a left-cancellative monoid and exists Δ in M s.t.
(i) Every right-divisor of Δ is a left-divisor of Δ,
(ii) The left-divisors of Δ generate M.
Then any two elements of M admit a common right-multiple.

Proof: Every element of M left-divides Δ^p for p large enough.

Proposition.— Assume that M is a monoid that admits a right-triangular presenta-
tion $\langle S \mid R^+ \rangle$ and there exists Δ in M satisfying $s \prec \Delta \preccurlyeq s\Delta$ for every s in S.
Then M is of right-O-type (and Δ is a right-Garside element in M).

Proof: Construct an endomorphism ϕ of M s.t. $g\Delta = \Delta\phi(g)$ for every g.

An easy criterion, in particular well-fitted for computer experiments.
Monoids of O-type: examples

• Proposition.— Let $M_{p,q,r} := \langle a, b \mid a = b(a^p b^r)^q \rangle^+$ with $\Delta = a^{p+1}$. Then $M_{p,q,r}$ is of right-O-type; for $r = 1$, it is of O-type, (and Δ is a Garside element).

• Proof: Relations $b \preceq a \preceq \Delta \preceq a\Delta$ straightforward; remains to check $\Delta \preceq b\Delta$.
Previous proposition \Rightarrow right-O-type; for $r = 1$, everything is symmetric. \square

• Particular cases:
 - $M_{1,1,1}$ $a = bab$: Klein bottle group;
 - $M_{1,2,1}$ $a = ba^2b$: braid group B_3 with $a = \sigma_1 \sigma_2$, $b = \sigma_2^{-1}$,
 \leadsto hence $LO(B_3)$ has an isolated point;
 - $M_{1,3,1}$ $a = ba^3b$: braid group B_3 with $a = \sigma_1 \sigma_2 \sigma_1$, $b = \sigma_2^{-1}$;
 - $M_{p,q,1}$ $x^{p+1} = y^{q+1}$ torus knot group.
1. The space of orderings of an orderable group
2. Right-triangular presentations
3. The case of braid groups
• The D-ordering on B_n: a braid is larger than 1 if it admits an expression in the generators σ_i s.t. the generator with least index occurs positively only.

Proposition. (Navas) The D-ordering is the limit of its conjugates.

\Rightarrow hence not isolated in the space $LO(B_n)$

• **Proposition.** (Dubrovina-Dubrovin) The submonoid B_n^{\oplus} of B_n generated by $\sigma_1 \sigma_2 \cdots \sigma_{n-1}$, $(\sigma_2 \cdots \sigma_{n-1})^{-1}$, $\sigma_3 \cdots \sigma_{n-1}$, $(\sigma_4 \cdots \sigma_{n-1})^{-1}$, ... is of O-type.

\Rightarrow hence isolated in the space $LO(B_n)$

• The monoid B_3^{\oplus} admits the presentations $\langle a, b \mid a = ba^2b \rangle^+$ and $\langle a, b \mid ba^3b \rangle^+$.

\Rightarrow = the monoids of O-type obtained above
• **Proposition.**— The monoid B_4^\oplus admits no right-triangular presentation with respect to the generators $\sigma_1 \sigma_2 \sigma_3, (\sigma_1 \sigma_2)^{-1}, \sigma_3$.

many orderings escape to the current approach

• **Definition.**— An element Δ of a cancellative monoid M is a Garside element in M if
 - the left- and right-divisors of Δ coincide,
 - the divisors of Δ generate M,
 - for every g in M, the elements g and Δ admit a left-gcd.

• **Proposition.**— Every submonoid of O-type of B_n admits $\Delta_{n}^{\pm 2}$ as a Garside element.

• Proof: The generators σ_i are pairwise conjugated under roots of Δ_{n}^{2p}.

 many exotic (non-Noetherian) Garside structures on B_n.
References

For isolated orderings:

For monoids of O-type and right-triangular presentations:

- P. Dehornoy; *Monoids of O-type, subword reversing, and ordered groups*; arXiv:1204.3211

For orderings on the braid groups:

For non-Noetherian Garside structures: