Unprovability results involving braids
Unprovability results involving braids

Patrick Dehornoy
Laboratoire de Mathématiques Nicolas Oresme
Université de Caen
• **Aim**: Describe combinatorial statements involving braids that are unprovable in weak subsystems of Peano arithmetic.
joint work with A. Weiermann, L. Carlucci, A. Bovykin

- **Aim**: Describe combinatorial statements involving braids that are unprovable in weak subsystems of Peano arithmetic *contrary to* all usual algebraic and combinatorial properties.
joint work with A. Weiermann, L. Carlucci, A. Bovykin

• **Aim:** Describe combinatorial statements involving braids that are unprovable in weak subsystems of Peano arithmetic **contrary to** all usual algebraic and combinatorial properties.

• **Interest:** - Involves *mainstream* objects and (hopefully) *natural* properties;
joint work with A.Weiermann, L.Carlucci, A.Bovykin

- **Aim:** Describe combinatorial statements involving braids that are unprovable in weak subsystems of Peano arithmetic contrary to all usual algebraic and combinatorial properties.

- **Interest:**
 - Involves mainstream objects and (hopefully) natural properties;
 - Leads to new questions and results about braids, in particular: a new normal form.
joint work with A.Weiermann, L.Carlucci, A.Bovykin

- **Aim:** Describe combinatorial statements involving braids that are unprovable in weak subsystems of Peano arithmetic contrary to all usual algebraic and combinatorial properties.

- **Interest:**
 - Involves mainstream objects and (hopefully) natural properties;
 - Leads to new questions and results about braids, in particular: a new normal form.

- **Plan:**
joint work with A. Weiermann, L. Carlucci, A. Bovykin

- **Aim:** Describe combinatorial statements involving braids that are unprovable in weak subsystems of Peano arithmetic contrary to all usual algebraic and combinatorial properties.

- **Interest:**
 - Involves mainstream objects
 - Leads to new questions and results about braids, in particular: a new normal form.

- **Plan:**
 - 1. Braids and their ordering
joint work with A. Weiermann, L. Carlucci, A. Bovykin

- **Aim:** Describe combinatorial statements involving braids that are unprovable in weak subsystems of Peano arithmetic contrary to all usual algebraic and combinatorial properties.

- **Interest:**
 - Involves mainstream objects and (hopefully) natural properties;
 - Leads to new questions and results about braids, in particular: a new normal form.

- **Plan:**
 - 1. Braids and their ordering
 - 2. Long sequences in B_3
joint work with A.Weiermann, L.Carlucci, A.Bovykin

- **Aim:** Describe combinatorial statements involving braids that are unprovable in weak subsystems of Peano arithmetic contrary to all usual algebraic and combinatorial properties.

- **Interest:**
 - Involves mainstream objects and (hopefully) natural properties;
 - Leads to new questions and results about braids, in particular: a new normal form.

- **Plan:**
 - 1. Braids and their ordering
 - 2. Long sequences in B_3
 - 3. Phase transition in B_3
Aim: Describe combinatorial statements involving braids that are unprovable in weak subsystems of Peano arithmetic contrary to all usual algebraic and combinatorial properties.

Interest: - Involves mainstream objects and (hopefully) natural properties;
- Leads to new questions and results about braids, in particular: a new normal form.

Plan:
- 1. Braids and their ordering
- 2. Long sequences in B_3
- 3. Phase transition in B_3
- 4. Long sequences in B_n
• A 4-strand braid diagram
Braids

- A 4-strand braid diagram
• A 4-strand braid diagram = 2D-projection of a 3D-figure:
• A 4-strand braid diagram = 2D-projection of a 3D-figure:
• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:
Braids

- A 4-strand braid diagram = 2D-projection of a 3D-figure:

- isotopy = move the strands but keep the ends fixed:
Braids

- A 4-strand braid diagram = 2D-projection of a 3D-figure:

- isotopy = move the strands but keep the ends fixed:
Braids

- A 4-strand braid diagram = 2D-projection of a 3D-figure:

- isotopy = move the strands but keep the ends fixed:

 isotopic to
• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:
• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:

isotopic to
• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:

isotopic to
• **A 4-strand braid diagram** = 2D-projection of a 3D-figure:

![Diagram](image)

• **isotopy** = move the strands but keep the ends fixed:

![Diagram](image)
Braids

- **A 4-strand braid diagram** = 2D-projection of a 3D-figure:

- **isotopy** = move the strands but keep the ends fixed:

 isotopic to
• A 4-strand **braid diagram** = 2D-projection of a 3D-figure:

• **isotopy** = move the strands but keep the ends fixed:

 isotopic to
• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:
• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:

isotopic to
• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:
• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:
Braids

- A 4-strand braid diagram = 2D-projection of a 3D-figure:

- isotopy = move the strands but keep the ends fixed:
Braids

• A 4-strand braid diagram = 2D-projection of a 3D-figure:

• isotopy = move the strands but keep the ends fixed:

• a braid := an isotopy class \rightsquigarrow represented by 2D-diagram,
Braids

- A 4-strand braid diagram = 2D-projection of a 3D-figure:

- isotopy = move the strands but keep the ends fixed:

- a braid := an isotopy class represented by 2D-diagram, but different 2D-diagrams may give rise to the same braid.
Braid groups

- **Product** of two braids:
• **Product** of two braids:

![Diagram of two braids](image)

Then well-defined (w.r.t. isotopy), associative, admits a unit:

\[\approx \]

because \(\approx \).

For each \(n \), the group \(B_n \) of \(n \) strand braids (E. Artin, ∼1925).
Braid groups

- **Product** of two braids:

\[\star \text{ then well-defined (w.r.t. isotopy), associative, admits a unit: } \star \approx \]

Then isotopic to and inverses:

\[braid \cdot braid = braid \cdot braid \]

For each \(n \), the group \(B_n \) of \(n \)-strand braids (E. Artin, \(\sim 1925 \)).
Braid groups

- **Product** of two braids:

 ![Diagram of braid product]

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

 ![Diagram of braid product and unit]

For each \(n \), the group \(B_n \) of \(n \)-strand braids (E. Artin, \(\sim \) 1925).
• **Product** of two braids:

\[
\begin{array}{ccc}
\text{Braid} & \times & \text{Braid} \\
\end{array}
\]

Then well-defined (w.r.t. isotopy), associative, admits a unit:

\[
\begin{array}{ccc}
\text{Braid} & \times & \text{Braid} \\
\end{array}
\]
Braid groups

- **Product** of two braids:

- Then well-defined (w.r.t. isotopy), associative, admits a unit:
Braid groups

- **Product** of two braids:

 ![Product of two braids diagram]

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

 ![Well-defined, associative, unit diagram]

For each \(n \), the group \(B_n \) of \(n \) strand braids (E. Artin, 1925).
Braid groups

- **Product** of two braids:

 ![Braid Product Diagram]

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

 ![Braid Units Diagram]

- and inverses:

 ![Braid Inverses Diagram]
Braid groups

- **Product** of two braids:

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

- and inverses:
Braid groups

- **Product** of two braids:

 ![Diagram of braid product]

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

 ![Diagram of braid unit]

and inverses:

![Diagram of braid inverse]
Braid groups

- **Product of two braids:**

 ![Diagram of braid product]

 Then well-defined (w.r.t. isotopy), associative, admits a unit:

 ![Diagram of isotopy and unit]

 and inverses:

 ![Diagram of braid inverses]
• **Product** of two braids:

\[\star \] Then well-defined (w.r.t. isotopy), associative, admits a unit:

and inverses:

For each \(n \), the group \(B_n \) of \(n \)-strand braids (E. Artin, \(\sim 1925 \)).
Braid groups

- **Product** of two braids:

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

- and inverses:
• **Product** of two braids:

\[\begin{array}{c}
\text{braid} \\
\text{braid}
\end{array} \quad \ast \quad \begin{array}{c}
\text{braid} \\
\text{braid}
\end{array} \quad \equiv \quad \begin{array}{c}
\text{braid} \\
\text{braid}
\end{array} \]

Then well-defined (w.r.t. isotopy), associative, admits a unit:

\[\begin{array}{c}
\text{braid} \\
\text{braid}
\end{array} \quad \ast \quad \begin{array}{c}
\text{braid}
\end{array} \quad \equiv \quad \begin{array}{c}
\text{braid}
\end{array} \quad \approx
\]

and inverses:

\[\begin{array}{c}
\text{braid}
\end{array} \quad \ast \quad \begin{array}{c}
\text{braid}^{-1}
\end{array} \quad \equiv \quad \begin{array}{c}
\text{braid}
\end{array} \quad \text{isotopic to}
\]
• **Product** of two braids:

\[\star : = \]

Then well-defined (w.r.t. isotopy), associative, admits a unit:

\[\star = \approx \]

and inverses:

\[(\text{braid})^{-1} = \text{braid} \]
Braid groups

- **Product** of two braids:

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

- and inverses:
Braid groups

- **Product** of two braids:

\[
\begin{array}{c}
\text{braid} \quad \ast \quad \text{braid} \\
\end{array}
\]

Then well-defined (w.r.t. isotopy), associative, admits a unit:

\[
\begin{array}{c}
\text{braid} \quad \ast \quad \text{nothing} \\
\approx \\
\end{array}
\]

and inverses:

\[
\text{braid} \quad \ast \quad \text{braid}^{-1} = \text{nothing}
\]
- **Product** of two braids:

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

- and inverses:

 \[\text{braid} \cdot (\text{braid})^{-1} = \text{isotopic to} \]
Braid groups

- **Product** of two braids:

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

and inverses:

For each \(n \), the group \(B_n \) of \(n \) strand braids (E. Artin, \(\sim 1925 \)).
Braid groups

- **Product** of two braids:

\[
\begin{array}{c}
\text{braid}
\end{array}
\begin{array}{c} \star \end{array}
\begin{array}{c} \text{braid} \end{array}
\begin{array}{c} = \end{array}
\begin{array}{c} \text{braid} \end{array}
\begin{array}{c} \text{braid} \end{array}
\end{array}
\]

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

\[
\begin{array}{c}
\text{braid}
\end{array}
\begin{array}{c} \star \end{array}
\begin{array}{c} \text{braid} \end{array}
\begin{array}{c} = \end{array}
\begin{array}{c} \text{braid} \end{array}
\begin{array}{c} \text{braid} \end{array}
\end{array}
\]

\[
\begin{array}{c} \approx \end{array}
\]

and inverses:

\[
\begin{array}{c}
\text{braid}
\end{array}
\begin{array}{c} -1 \end{array}
\begin{array}{c} = \end{array}
\begin{array}{c} \text{braid} \end{array}
\begin{array}{c} \text{braid} \end{array}
\end{array}
\]

\[
\begin{array}{c}
\text{iso\text{t}opic \ to}
\end{array}
\]
Braid groups

- **Product** of two braids:

 ![Diagram of braid product](image)

 Then well-defined (w.r.t. isotopy), associative, admits a unit:

 ![Diagram of isotopy](image)

 and inverses:

 ![Diagram of braid inverse](image)
• **Product** of two braids:

\[
\begin{array}{c}
\text{braid} \\
\hline
\text{braid}
\end{array}
\]

Then well-defined (w.r.t. isotopy), associative, admits a unit:

\[
\begin{array}{c}
\text{braid} \\
\hline
\text{braid}
\end{array}
\]

and inverses:

\[
\begin{array}{c}
\text{braid} \\
\hline
\text{braid}
\end{array}
\]

Because

\[
\begin{array}{c}
\text{braid} \\
\hline
\text{braid}
\end{array}
\]

For each \(n \), the group \(B_n \) of \(n \) strand braids (E. Artin, ∼1925).
Braid groups

- **Product** of two braids:

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

- and inverses:
Braid groups

- **Product** of two braids:

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

- and inverses:
Braid groups

- **Product** of two braids:

- Then well-defined \((w.r.t. \text{ isotopy})\), associative, admits a unit:

- And inverses:
Braid groups

- **Product of two braids:**

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

- and inverses:

 - isotopic to because
Braid groups

- **Product** of two braids:

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

- and inverses:

For each n, the group B_n of n-strand braids (E. Artin, ~1925).
Braid groups

- **Product** of two braids:

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

- and inverses:

 - Because \approx
Braid groups

- **Product** of two braids:

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

- and inverses:

 because
Braid groups

- **Product** of two braids:

- Then well-defined (*w.r.t. isotopy*), associative, admits a unit:

- and inverses:

and isotopic to
- **Product** of two braids:

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

and inverses:

because
Braid groups

- **Product** of two braids:

\[\text{braid} \times \text{braid} = [\text{braid}] \]

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

\[\text{braid} \times [\text{braid}] = [\text{braid}] \approx \]

and inverses:

\[[\text{braid}]^{-1} = \text{braid} \text{ because } \]

isotopic to
Braid groups

- **Product of two braids:**

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

- and inverses:

 because
Braid groups

- **Product** of two braids:

\[
\begin{array}{c}
\text{braid} \\
\end{array}
\quad \ast \\
\begin{array}{c}
\text{braid}
\end{array}
\quad := \\
\begin{array}{c}
\text{braid}
\end{array}
\]

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

\[
\begin{array}{c}
\text{braid}
\end{array}
\quad \ast \\
\begin{array}{c}
\text{braid}
\end{array}
\quad = \\
\begin{array}{c}
\text{braid}
\end{array}
\]

and inverses:

\[
\begin{array}{c}
\text{braid}
\end{array}
\quad\quad -1
\]

\[
\begin{array}{c}
\text{braid}
\end{array}
\quad = \\
\begin{array}{c}
\text{braid}
\end{array}
\quad \approx \\
\begin{array}{c}
\text{braid}
\end{array}
\quad \text{because}
\]

\[
\begin{array}{c}
\text{braid}
\end{array}
\quad \approx \\
\begin{array}{c}
\text{braid}
\end{array}
\quad .
\]
Braid groups

- **Product** of two braids:

- Then well-defined (w.r.t. isotopy), associative, admits a unit:

- and inverses:

- For each n, the group B_n of n strand braids (E.Artin, ~1925).
Artin presentation of B_n

- Artin generators of B_n:

\[
\begin{align*}
\sigma_1
\sigma_2
\sigma_1
\sigma_2
\sigma_1
\end{align*}
\]

\[
\begin{align*}
\sigma_1
\sigma_3
\sigma_3
\sigma_1
\end{align*}
\]
Artin presentation of B_n

- Artin generators of B_n:

\[
\sigma_1 \sigma_2 \sigma_1 \sigma_2 \sigma_1 \sigma_2 \sigma_1 \sigma_2 = \sigma_1 \sigma_3 \sigma_3 \sigma_1
\]
Artin presentation of B_n

- Artin generators of B_n:

\[\sigma_1 \sigma_2 \sigma_1 \sigma_2 = \sigma_1 \sigma_3 \sigma_3 \sigma_1 \]
Artin presentation of B_n

- Artin generators of B_n:

\[
\begin{align*}
\sigma_1 \sigma_2 \sigma_1 & \approx \sigma_2 \sigma_1 \\
\sigma_1 \sigma_3 \sigma_3 \sigma_1 & \approx \sigma_3 \sigma_1
\end{align*}
\]
Artin presentation of B_n:

- Artin generators of B_n:

\[
\begin{align*}
\sigma_1
& \approx \sigma_2
& \approx \sigma_3
& \sigma_1
& \approx
\end{align*}
\]

\[
\begin{align*}
\sigma_1
& \approx
\end{align*}
\]

\[
\sigma_1
\]
• Artin generators of B_n:
Artin presentation of B_n

- Artin generators of B_n:

\[
\sigma_1 \sigma_2 \sigma_1 \sigma_2 \sigma_1 \sigma_2 \sigma_3 = \sigma_1 \sigma_2 \sigma_3
\]
Artin presentation of B_n

- Artin generators of B_n:

\[\sigma_1 \sigma_2 \sigma_1 \sigma_2 \sigma_1 = \sigma_1^{-1} \]

Theorem (Artin): The group B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$, subject to:

- $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ for $|i - j| = 1$,
- $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i - j| \geq 2$.

\[\approx \sigma_1 \sigma_2 \sigma_1 \sigma_2 \sigma_1 \approx \sigma_1 \sigma_3 \sigma_3 \sigma_1 \]
Artin presentation of B_n

- **Artin generators of B_n:**

\[
\sigma_1 \sigma_2 \sigma_3 \sigma_1^{-1} = \sigma_1 \sigma_2 \sigma_3 \sigma_1^{-1}
\]

- **Theorem (Artin):** The group B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$.
Artin presentation of B_n

- Artin generators of B_n:

 \[\sigma_1 \sigma_2 \sigma_3 \sigma_1^{-1} \]

- Theorem (Artin): The group B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$, subject to

 \[\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \quad \text{for } |i - j| = 1, \]
Artin presentation of B_n

- Artin generators of B_n:

\[
\sigma_1 \sigma_2 \sigma_3 \sigma_1^{-1}
\]

- Theorem (Artin): The group B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$, subject to

\[
\begin{align*}
\sigma_i \sigma_j \sigma_i &= \sigma_j \sigma_i \sigma_j & \text{for } |i - j| = 1, \\
\sigma_i \sigma_j &= \sigma_j \sigma_i & \text{for } |i - j| = 2.
\end{align*}
\]
Artin presentation of B_n

- **Artin generators of B_n:**

 \[
 \begin{array}{cccc}
 \sigma_1 & \sigma_2 & \sigma_3 & \sigma_1^{-1} \\
 \end{array}
 \]

- **Theorem (Artin):** The group B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$, subject to

 \[
 \begin{align*}
 \sigma_i \sigma_j \sigma_i &= \sigma_j \sigma_i \sigma_j & \text{for } |i - j| = 1, \\
 \sigma_i \sigma_j &= \sigma_j \sigma_i & \text{for } |i - j| \geq 2.
 \end{align*}
 \]
Artin presentation of B_n

- Artin generators of B_n:

\[
\sigma_1 \sigma_2 \sigma_1 \sigma_1 = \sigma_1 \sigma_3 \sigma_3 \sigma_1
\]

- Theorem (Artin): The group B_n is generated by $\sigma_1, \ldots, \sigma_{n-1}$, subject to

\[
\begin{align*}
\sigma_i \sigma_j \sigma_i &= \sigma_j \sigma_i \sigma_j & \text{for } |i - j| = 1, \\
\sigma_i \sigma_j &= \sigma_j \sigma_i & \text{for } |i - j| \geq 2.
\end{align*}
\]
• Definition: For \(x, y \) in \(B_\infty \), say that \(x < y \) holds if, among all words representing \(x^{-1}y \), at least one is such that the generator \(\sigma_i \) with highest index appears positively only (\(\sigma_i \) occurs, \(\sigma_i^{-1} \) does not).

• Theorem: (i) The relation \(< \) is a left-invariant total order on \(B_\infty \); (ii) (Laver) The restriction of \(< \) to \(B_+\infty \) is a well-order; (iii) (Burckel) The restriction of \(< \) to \(B_+n \) has length \(\omega_\omega n - 2 \).
• Definition: For x, y in B_{∞}, say that $x < y$ holds if, among all words representing $x^{-1}y$, at least one is such that the generator σ_i with highest index appears positively only (σ_i occurs, σ_i^{-1} does not).

\Rightarrow e.g., $\sigma_2 < \sigma_2 \sigma_1$ holds, because $\sigma_2^{-1} \sigma_1 \sigma_2$
• Definition: For \(x, y\) in \(B_{\infty}\), say that \(x < y\) holds if, among all words representing \(x^{-1}y\), at least one is such that the generator \(\sigma_i\) with highest index appears positively only (\(\sigma_i\) occurs, \(\sigma_i^{-1}\) does not).

\[\sigma_2 < \sigma_2\sigma_1\] holds, because \(\sigma_2^{-1}\sigma_1\sigma_2 = \sigma_1\sigma_2\sigma_1^{-1}\), and, in the latter word, \(\sigma_2\) appears positively only.
The standard braid order

• Definition: For x, y in B_∞, say that $x < y$ holds if, among all words representing $x^{-1}y$, at least one is such that the generator σ_i with highest index appears positively only (σ_i occurs, σ_i^{-1} does not).

 \[
 \sigma_2 < \sigma_2 \sigma_1 \text{ holds, because } \sigma_2^{-1} \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \sigma_1^{-1},
 \]
 and, in the latter word, σ_2 appears positively only.

• Theorem: (i) The relation $<$ is a left-invariant total order on B_∞;
The standard braid order

• Definition: For \(x, y \) in \(B_\infty \), say that \(x < y \) holds if, among all words representing \(x^{-1}y \), at least one is such that the generator \(\sigma_i \) with highest index appears positively only (\(\sigma_i \) occurs, \(\sigma_i^{-1} \) does not).

\[\sigma_2 < \sigma_2 \sigma_1 \] holds, because \(\sigma_2^{-1} \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \sigma_1^{-1} \), and, in the latter word, \(\sigma_2 \) appears positively only.

• Theorem: (i) The relation \(< \) is a left-invariant total order on \(B_\infty \); (ii) (Laver) The restriction of \(< \) to \(B^+_\infty \) is a well-order;
The standard braid order

• Definition: For x, y in B_∞, say that $x < y$ holds if, among all words representing $x^{-1}y$, at least one is such that the generator σ_i with highest index appears positively only (σ_i occurs, σ_i^{-1} does not).

\Rightarrow e.g., $\sigma_2 < \sigma_2 \sigma_1$ holds, because $\sigma_2^{-1} \sigma_1 \sigma_2 = \sigma_1 \sigma_2 \sigma_1^{-1}$, and, in the latter word, σ_2 appears positively only.

• Theorem: (i) The relation $<$ is a left-invariant total order on B_∞;
(ii) (Laver) The restriction of $<$ to B^+_{∞} is a well-order;
(iii) (Burckel) The restriction of $<$ to B^+_n has length $\omega^{\omega^{-2}}$.
• Construct (very) long descending sequences of braids using a simple inductive rule.
• Construct (very) **long** descending sequences of braids using a simple inductive rule.

⇝ Reminiscent of Goodstein’s sequences and Hydra battles: “battle against a malevolent braid”: get rid of all crossings; at step t, chop off 1 crossing, but t new crossings reappear in general.
• Construct (very) long descending sequences of braids using a simple inductive rule.

⇝ Reminiscent of Goodstein’s sequences and Hydra battles: “battle against a malevolent braid”: get rid of all crossings; at step t, chop off 1 crossing, but t new crossings reappear in general.

• Here in the 3 strand version—but exists for each n.

Long sequences of braids
- (Burckel) The alternating normal form of a positive 3-braid:

$$\sigma_{[p]}^{e_p} \cdots \sigma_2^{e_2} \sigma_1^{e_1} \text{ with } e_p \geq 1, \, e_k \geq 2 \text{ for } p > k \geq 3, \, e_2 \geq 1, \, e_1 \geq 0,$$

1 or 2 according to $p \pmod{2}$
• (Burckel) The alternating normal form of a positive 3-braid:

$$\sigma^e_p \ldots \sigma^e_2 \sigma^e_1$$

with $e_p \geq 1$, $e_k \geq 2$ for $p > k \geq 3$, $e_2 \geq 1$, $e_1 \geq 0$,

1 or 2 according to $p \pmod{2}$

• The critical position: smallest (= rightmost) k s.t. e_k does not have the minimal legal value, if it exists, p otherwise.
• (Burckel) The alternating normal form of a positive 3-braid:

\[\sigma_{[p]}^{e_p} \cdots \sigma_2^{e_2} \sigma_1^{e_1} \text{ with } e_p \geq 1, \ e_k \geq 2 \text{ for } p > k \geq 3, \ e_2 \geq 1, \ e_1 \geq 0, \]

\[\text{1 or 2 according to } p \pmod{2} \]

• The critical position: smallest (= rightmost) \(k \) s.t. \(e_k \) does not have the minimal legal value, if it exists, \(p \) otherwise.
• (Burckel) **The alternating normal form** of a positive 3-braid:

\[\sigma_{[p]}^{e_p} \ldots \sigma_2^{e_2} \sigma_1^{e_1} \text{ with } e_p \geq 1, \ e_k \geq 2 \text{ for } p > k \geq 3, \ e_2 \geq 1, \ e_1 \geq 0, \]

1 or 2 according to \(p \pmod{2} \)

• The **critical position**: smallest (= rightmost) \(k \) s.t. \(e_k \) does not have the minimal legal value, if it exists, \(p \) otherwise.

\[
\begin{array}{c}
\sigma_2 \\
\sigma_1 \\
\end{array}
\]

\[
\begin{array}{c}
4 \\
3 \\
2 \\
1 \\
\end{array}
\]
• (Burckel) The alternating normal form of a positive 3-braid:

$$\sigma_{[p]}^{e_p} \ldots \sigma_2^{e_2} \sigma_1^{e_1} \text{ with } e_p \geq 1, \ e_k \geq 2 \text{ for } p > k \geq 3, \ e_2 \geq 1, \ e_1 \geq 0,$$

1 or 2 according to $p \pmod 2$

• The critical position: smallest (= rightmost) k s.t. e_k does not have the minimal legal value, if it exists, p otherwise.
• (Burckel) The alternating normal form of a positive 3-braid:

\[\sigma_{[p]}^{e_p} \cdots \sigma_2^{e_2} \sigma_1^{e_1} \text{ with } e_p \geq 1, \ e_k \geq 2 \text{ for } p > k \geq 3, \ e_2 \geq 1, \ e_1 \geq 0, \]

1 or 2 according to \(p \pmod{2} \).
• (Burckel) The alternating normal form of a positive 3-braid:
\[\sigma_{[p]}^{\varepsilon_p} \ldots \sigma_2^{\varepsilon_2} \sigma_1^{\varepsilon_1} \] with \(\varepsilon_p \geq 1, \varepsilon_k \geq 2 \) for \(p > k \geq 3, \varepsilon_2 \geq 1, \varepsilon_1 \geq 0, \)
1 or 2 according to \(p \pmod{2} \)

• The critical position: smallest (= rightmost) \(k \) s.t. \(\varepsilon_k \) does not have the minimal legal value, if it exists, \(p \) otherwise.
(Burckel) The alternating normal form of a positive 3-braid:

\[\sigma_{[p]}^{e_p} \sigma_2^{e_2} \sigma_1^{e_1} \] with \(e_p \geq 1 \), \(e_k \geq 2 \) for \(p > k \geq 3 \), \(e_2 \geq 1 \), \(e_1 \geq 0 \),

1 or 2 according to \(p \pmod{2} \)

The critical position: smallest (= rightmost) \(k \) s.t. \(e_k \) does not have the minimal legal value, if it exists, \(p \) otherwise.
• (Burckel) The alternating normal form of a positive 3-braid:
\[\sigma_{[p]}^{e_p} \ldots \sigma_2^{e_2} \sigma_1^{e_1} \text{ with } e_p \geq 1, e_k \geq 2 \text{ for } p > k \geq 3, e_2 \geq 1, e_1 \geq 0, \]
\[\text{1 or 2 according to } p \pmod{2} \]

• The critical position: smallest (= rightmost) \(k \) s.t. \(e_k \) does not have the minimal legal value, if it exists, \(p \) otherwise.
(Burckel) The alternating normal form of a positive 3-braid:

\[\sigma_{[p]}^{e_p} \cdots \sigma_2^{e_2} \sigma_1^{e_1} \] with \(e_p \geq 1, \ e_k \geq 2 \) for \(p > k \geq 3, \ e_2 \geq 1, \ e_1 \geq 0, \)

1 or 2 according to \(p \) (mod 2)

The critical position: smallest (= rightmost) \(k \) s.t. \(e_k \) does not have the minimal legal value, if it exists, \(p \) otherwise.
The G_3-sequence from a positive 3-braid b:
\(G_3 \)-sequences

- The \(G_3 \)-sequence from a positive 3-braid \(b \):
 - Start with the alternating normal form of \(b \);
\(G_3\)-sequences

- The \(G_3\)-sequence from a positive 3-braid \(b\):
 - Start with the alternating normal form of \(b\);
 - At step \(t\): remove 1 crossing in the critical block;
\(G_3\)-sequences

- The \(G_3\)-sequence from a positive 3-braid \(b\):
 - Start with the alternating normal form of \(b\);
 - At step \(t\): remove 1 crossing in the critical block; add \(t\) new crossings in the next block, if it exists;
• The G_3-sequence from a positive 3-braid b:

- Start with the alternating normal form of b;
- At step t: remove 1 crossing in the critical block;
 add t new crossings in the next block, if it exists;
- The sequence stops when (if) one reaches the braid 1.
• The G_3-sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step t: remove 1 crossing in the critical block;
 - add t new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.
• The G_3-sequence from a positive 3-braid b:

- Start with the alternating normal form of b;
- At step t: remove 1 crossing in the critical block; add t new crossings in the next block, if it exists;
- The sequence stops when (if) one reaches the braid 1.

Example: $\sigma_2^2 \sigma_1^2$.

Diagram:

- Critical block: remove 1 crossing
- Next block (if it exists): add t crossings
The G_3-sequence from a positive 3-braid b:

- Start with the alternating normal form of b;
- At step t: remove 1 crossing in the critical block;
 add t new crossings in the next block, if it exists;
- The sequence stops when (if) one reaches the braid 1.

Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, $\sigma_2 \sigma_1$, σ_1, σ_7, σ_6, σ_5, σ_4, σ_3, σ_2, σ_1, 1.
• The G_3-sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step t: remove 1 crossing in the critical block;
 add t new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.

- Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2.
The G_3-sequence from a positive 3-braid b:

- Start with the alternating normal form of b;
- At step t: remove 1 crossing in the critical block;
 add t new crossings in the next block, if it exists;
- The sequence stops when (if) one reaches the braid 1.

Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2^2 \sigma_1$, σ_2^2, $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2, σ_1.
• The G_3-sequence from a positive 3-braid b:

- Start with the alternating normal form of b;
- At step t: remove 1 crossing in the critical block; add t new crossings in the next block, if it exists;
- The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2\sigma_1^2, \sigma_2^2\sigma_1, \sigma_2^2, \sigma_2\sigma_1^3, \sigma_2\sigma_1^2$.
G_3-sequences

- The G_3-sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step t: remove 1 crossing in the critical block; add t new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.

Example: $\sigma_2^2\sigma_1^2$, $\sigma_2^2\sigma_1$, σ_2^2, $\sigma_2\sigma_1^3$, $\sigma_2\sigma_1^2$, $\sigma_2\sigma_1$, $\sigma_2\sigma_1$.
- The G_3-sequence from a positive 3-braid b:

 - Start with the alternating normal form of b;
 - At step t: remove 1 crossing in the critical block; add t new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.

Example: $\sigma_2^2 \sigma_1^2, \sigma_2^2 \sigma_1, \sigma_2^2, \sigma_2 \sigma_1^3, \sigma_2 \sigma_1^2, \sigma_2 \sigma_1, \sigma_2,$
• The G_3-sequence from a positive 3-braid b:

- Start with the alternating normal form of b;
- At step t: remove 1 crossing in the critical block;
 add t new crossings in the next block, if it exists;
- The sequence stops when (if) one reaches the braid 1.

- Example: $\sigma_2^2\sigma_1^2$, $\sigma_2^2\sigma_1$, σ_2^2, $\sigma_2\sigma_1^3$, $\sigma_2\sigma_1^2$, $\sigma_2\sigma_1$, σ_2, σ_1^7.
The \mathcal{G}_3-sequence from a positive 3-braid b:

- Start with the alternating normal form of b;
- At step t: remove 1 crossing in the critical block;
 add t new crossings in the next block, if it exists;
- The sequence stops when (if) one reaches the braid 1.

![Diagram showing the process](image)

- Example: $\sigma_2\sigma_1^2$, $\sigma_2\sigma_1$, σ_2, $\sigma_2\sigma_1^3$, $\sigma_2\sigma_1^2$, $\sigma_2\sigma_1$, σ_2, σ_1^7, σ_1^6.
G_3-sequences

- The G_3-sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step t: remove 1 crossing in the critical block; add t new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.

- Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2^2, $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2, σ_1^7, σ_1^6, σ_1^5,

Diagram:

- Critical block: remove 1 crossing
- Next block (if it exists): add t crossings
The G_3-sequence from a positive 3-braid b:

- Start with the alternating normal form of b;
- At step t: remove 1 crossing in the critical block; add t new crossings in the next block, if it exists;
- The sequence stops when (if) one reaches the braid 1.

Example: $\sigma_2^2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2^2, $\sigma_2 \sigma_1^3$, $\sigma_2 \sigma_1^2$, $\sigma_2 \sigma_1$, σ_2, σ_1^7, σ_1^6, σ_1^5, σ_1^4.
• The G_3-sequence from a positive 3-braid b:

- Start with the alternating normal form of b;
- At step t: remove 1 crossing in the critical block;
 add t new crossings in the next block, if it exists;
- The sequence stops when (if) one reaches the braid 1.

• Example: $\sigma_2^2\sigma_1^2$, $\sigma_2^2\sigma_1$, σ_2^2, $\sigma_2\sigma_1^3$, $\sigma_2\sigma_1^2$, $\sigma_2\sigma_1$, σ_2, σ_1^7, σ_1^6, σ_1^5, σ_1^4, σ_1^3.
• The G_3-sequence from a positive 3-braid b:

- Start with the alternating normal form of b;
- At step t: remove 1 crossing in the critical block;
 add t new crossings in the next block, if it exists;
- The sequence stops when (if) one reaches the braid 1.

Example: $\sigma_2^2\sigma_1^2$, $\sigma_2^2\sigma_1$, σ_2^2, $\sigma_2\sigma_1^3$, $\sigma_2\sigma_1^2$, $\sigma_2\sigma_1$, σ_2, σ_1^7, σ_1^6, σ_1^5, σ_1^4, σ_1^3, σ_1^2,
• The G_3-sequence from a positive 3-braid b:
 - Start with the alternating normal form of b;
 - At step t: remove 1 crossing in the critical block;
 add t new crossings in the next block, if it exists;
 - The sequence stops when (if) one reaches the braid 1.

- Example: $\sigma_2^2\sigma_1^2, \sigma_2^2\sigma_1, \sigma_2^2, \sigma_2\sigma_1^3, \sigma_2\sigma_1^2, \sigma_2\sigma_1, \sigma_2, \sigma_1^7, \sigma_1^6, \sigma_1^5, \sigma_1^4, \sigma_1^3, \sigma_1^2, \sigma_1$,
• The G_3-sequence from a positive 3-braid b:

- Start with the alternating normal form of b;
- At step t: remove 1 crossing in the critical block; add t new crossings in the next block, if it exists;
- The sequence stops when (if) one reaches the braid 1.

Example: $\sigma_2^2\sigma_1^2, \sigma_2^2\sigma_1, \sigma_2^2, \sigma_2\sigma_1^3, \sigma_2\sigma_1^2, \sigma_2\sigma_1, \sigma_2, \sigma_1^7, \sigma_1^6, \sigma_1^5, \sigma_1^4, \sigma_1^3, \sigma_1^2, \sigma_1, 1$.
An unprovability statement

- More examples:

Nevertheless:

- Proposition A: Every G_3-sequence is finite.
 Proof: G_3-sequences are descending sequences in a well-order. □

But:

- Theorem: Proposition A cannot be proved in $I\Sigma_1$.
 ↑ the subsystem of Peano arithmetic in which induction is restricted to formulas with one \exists quantifier in contrast with the folklore result:

- All usual (algebraic) properties of braids can be proved in $I\Sigma_1$.
• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires
• More examples:
 - starting with \(\sigma_1 \sigma_2 \sigma_1 \) requires 30 steps;
 - starting with \(\sigma_1^2 \sigma_2^2 \sigma_1^2 \) requires 9
• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90

Nevertheless:
• Proposition A: Every G_3-sequence is finite.
Proof: G_3-sequences are descending sequences in a well-order. □

But:
• Theorem: Proposition A cannot be proved in $I \Sigma_1$ the subsystem of Peano arithmetic in which induction is restricted to formulas with one \exists quantifier in contrast with the folklore result:
• All usual (algebraic) properties of braids can be proved in $I \Sigma_1$.
More examples:
- starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
- starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,1
• More examples:
 - starting with $\sigma_1\sigma_2\sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2\sigma_2^2\sigma_1^2$ requires $90,15$
• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159
• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,9

Nevertheless:

• Proposition A: Every $G_3 G_3 G_3$-sequence is finite.
 Proof: $G_3 G_3 G_3$-sequences are descending sequences in a well-order.

□

But:

• Theorem: Proposition A cannot be proved in $I\Sigma_1$.
 ↑ the subsystem of Peano arithmetic in which induction
 is restricted to formulas with one \exists quantifier
 in contrast with the folklore result:
 • All usual (algebraic) properties of braids can be proved in $I\Sigma_1$.
• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires $90,159,95$
• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953
• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires $90,159,953,4$
• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,47
• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,477
More examples:
- starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
- starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires $90,159,953,477,6$
• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires $90,159,953,477,63$
• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires $90,159,953,477,630$ steps...
An unprovability statement

• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,477,630 steps...

Nevertheless:

• Proposition A: Every G_3-sequence is finite.
An unprovability statement

- More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires $90,159,953,477,630$ steps...

Nevertheless:

- **Proposition A**: Every G_3-sequence is finite.

Proof: G_3-sequences are descending sequences in a well-order.
• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires $90,159,953,477,630$ steps...

Nevertheless:

• Proposition A: Every G_3-sequence is finite.

Proof: G_3-sequences are descending sequences in a well-order. □

But:
• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires $90,159,953,477,630$ steps...

Nevertheless:

• Proposition A: Every G_3-sequence is finite.

 Proof: G_3-sequences are descending sequences in a well-order.

But:

• Theorem: Proposition A cannot be proved in $I\Sigma_1$.
An unprovability statement

• More examples:
 - starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
 - starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,477,630 steps...

Nevertheless:

• Proposition A: Every G_3-sequence is finite.

Proof: G_3-sequences are descending sequences in a well-order. □

But:

• Theorem: Proposition A cannot be proved in $I \Sigma_1$.

the subsystem of Peano arithmetic in which induction is restricted to formulas with one \exists quantifier
More examples:
- starting with $\sigma_1 \sigma_2 \sigma_1$ requires 30 steps;
- starting with $\sigma_1^2 \sigma_2^2 \sigma_1^2$ requires 90,159,953,477,630 steps...

Nevertheless:

• Proposition A: Every G_3-sequence is finite.

 Proof: G_3-sequences are descending sequences in a well-order. □

But:

• Theorem: Proposition A cannot be proved in $I \Sigma_1$.

 the subsystem of Peano arithmetic in which induction
 is restricted to formulas with one \exists quantifier

in contrast with the folklore result:

• All usual (algebraic) properties of braids can be proved in $I \Sigma_1$.

An unprovability statement
• Unprovability of the finiteness of G_3-sequences in $I\Sigma_1$:

- assign ordinals to braids, and compare with fundamental sequences and the Hardy hierarchy.

- Definition: For σ a G_3-braid with normal form $\sigma^{e_p}\varepsilon_1 \ldots \sigma^{e_2}\varepsilon_2 \sigma^{e_1}\varepsilon_1$, put
 \[
 \text{ord}(b) := \omega^{p-1} \cdot e_p + \sum_{p > k \geq 1} \omega^{k-1} \cdot (e_k - e_{\min k})
 \]
 where $e_{\min k} = 2$ for $k \geq 3$, $e_{\min 2} = 1$, and $e_{\min 1} = 0$.

- Lemma: For every G_3-braid b and every number t:
 \[
 \text{ord}(b^{\{t\}}) = \text{ord}(b^{[t]})
 \]

↑ the braid obtained from b at step t.

"Fundamental sequence" of ordinals: $\lambda[x] := \gamma + \omega^{r-1} \cdot x$ for $\lambda = \gamma + \omega^{r}$.
Proof of unprovability

- Unprovability of the finiteness of G_3-sequences in $I\Sigma_1$:
 - assign ordinals to braids, and
Proof of unprovability

- Unprovability of the finiteness of G_3-sequences in $I\Sigma_1$:
 - assign ordinals to braids, and
 - compare with fundamental sequences and the Hardy hierarchy.
Proof of unprovability

- Unprovability of the finiteness of G_3-sequences in $I\Sigma_1$:
 - assign ordinals to braids, and
 - compare with fundamental sequences and the Hardy hierarchy.

- Definition: For b a 3-braid with normal form $\sigma_{[p]}^{e_p} \sigma_2^{e_2} \sigma_1^{e_1}$, put

$$\text{ord}(b) = \omega^{p-1} \cdot e_p + \sum_{p > k \geq 1} \omega^{k-1} \cdot (e_k - e_{\min k})$$

where $e_{\min k} = 2$ for $k \geq 3$, $e_{\min 2} = 1$, $e_{\min 1} = 0$.
Proof of unprovability

• Unprovability of the finiteness of G_3-sequences in $I\Sigma_1$:
 - assign ordinals to braids, and
 - compare with fundamental sequences and the Hardy hierarchy.

• Definition: For b a 3-braid with normal form $\sigma_{[p]}^{e_p} \ldots \sigma_2^{e_2} \sigma_1^{e_1}$, put

$$\text{ord}(b) := \omega^{p-1} \cdot e_p + \sum_{p>k>1} \omega^{k-1} \cdot (e_k - e_{k}^{\text{min}})$$
Proof of unprovability

- Unprovability of the finiteness of G_3-sequences in $I \Sigma_1$:
 - assign ordinals to braids, and
 - compare with fundamental sequences and the Hardy hierarchy.

- Definition: For b a 3-braid with normal form $\sigma_{[p]}^{e_p} \cdots \sigma_{2}^{e_2} \sigma_{1}^{e_1}$, put

$$\text{ord}(b) := \omega^{p-1} \cdot e_p + \sum_{p > k \geq 1} \omega^{k-1} \cdot (e_k - e_k^{\text{min}})$$

where $e_k^{\text{min}} = 2$ for $k \geq 3$, $e_2^{\text{min}} = 1$, $e_1^{\text{min}} = 0$.
Proof of unprovability

- Unprovability of the finiteness of G_3-sequences in $I\Sigma_1$:
 - assign ordinals to braids, and
 - compare with fundamental sequences and the Hardy hierarchy.

- Definition: For b a 3-braid with normal form $\sigma_{[p]}^e \sigma_2^e \sigma_1^e$, put
 \[
 \text{ord}(b) := \omega^{p-1} \cdot e_p + \sum_{p > k \geq 1} \omega^{k-1} \cdot (e_k - e_{k}^{\min})
 \]
 where $e_{k}^{\min} = 2$ for $k \geq 3$, $e_2^{\min} = 1$, $e_1^{\min} = 0$.

- Lemma: For every 3-braid b and every number t:
 \[
 \text{ord}(b\{t\}) = \text{ord}(b)[t].
 \]
Proof of unprovability

- Unprovability of the finiteness of G_3-sequences in $I\Sigma_1$:
 - assign ordinals to braids, and
 - compare with fundamental sequences and the Hardy hierarchy.

- Definition: For b a 3-braid with normal form $\sigma_{[p]}^{e_p} \cdots \sigma_2^{e_2} \sigma_1^{e_1}$, put
 \[
 \text{ord}(b) := \omega^{p-1} \cdot e_p + \sum_{p > k \geq 1} \omega^{k-1} \cdot (e_k - e_k^{min})
 \]
 where $e_k^{min} = 2$ for $k \geq 3$, $e_2^{min} = 1$, $e_1^{min} = 0$.

- Lemma: For every 3-braid b and every number t:
 \[
 \text{ord}(b\{t\}) = \text{ord}(b)[t].
 \]

 the braid obtained from b at step t
Proof of unprovability

- Unprovability of the finiteness of G_3-sequences in $I\Sigma_1$:
 - assign ordinals to braids, and
 - compare with fundamental sequences and the Hardy hierarchy.

- Definition: For b a 3-braid with normal form $\sigma_{[p]}^{e_p} \ldots \sigma_2^{e_2} \sigma_1^{e_1}$, put
 \[
 \text{ord}(b) := \omega^{p-1} \cdot e_p + \sum_{p > k > 1} \omega^{k-1} \cdot (e_k - e_k^{\text{min}})
 \]
 where $e_k^{\text{min}} = 2$ for $k \geq 3$, $e_2^{\text{min}} = 1$, $e_1^{\text{min}} = 0$.

- Lemma: For every 3-braid b and every number t:
 \[
 \text{ord}(b\{t\}) = \text{ord}(b)[t].
 \]
 the braid obtained from b at step t
 “fundamental sequence” of ordinals:
 $\lambda[x] := \gamma + \omega^{r-1} \cdot x$ for $\lambda = \gamma + \omega^r$
• Proposition: For b a 3-braid with $\text{ord}(b) = \beta$ and $k \geq 0$:

$$T(b\sigma_1^k) \geq H_\beta(k).$$
Proposition: For b a 3-braid with $\text{ord}(b) = \beta$ and $k \geq 0$:

$$T(b\sigma_1^k) \geq H_\beta(k).$$

the length of the G_3-sequence from...
Proposition: For b a 3-braid with $\text{ord}(b) = \beta$ and $k \geq 0$:

$$T(b\sigma_1^k) \geq H_\beta(k).$$

The length of the G_3-sequence from...

“Hardy hierarchy” of functions:

- $H_0(x) = x$,
- $H_{\alpha+1}(x) := H_\alpha(x + 1)$,
- $H_\lambda(x) := H_{\lambda[x]}(x)$ for limit λ
Proposition: For \(b \) a 3-braid with \(\text{ord}(b) = \beta \) and \(k \geq 0 \):
\[
T(b \sigma_1^k) \geq H_\beta(k).
\]

Examples: For \(r \) in \(\mathbb{N} \):
\[
H_r(x) = x + r,
\]

“Hardy hierarchy” of functions:
\[
H_0(x) = x, \quad H_{\alpha+1}(x) := H_\alpha(x + 1),
\]
\[
H_\lambda(x) := H_\lambdax \text{ for limit } \lambda.
\]
• Proposition: For b a 3-braid with $\text{ord}(b) = \beta$ and $k \geq 0$:

$$T(b\sigma_1^k) \geq H_{\beta}(k).$$

The length of the G_3-sequence from...

“Hardy hierarchy” of functions:

$$H_0(x) = x, \quad H_{\alpha+1}(x) := H_{\alpha}(x + 1),$$

$$H_\lambda(x) := H_\lambdax \text{ for limit } \lambda$$

• Examples: For r in \mathbb{N}:

$$H_r(x) = x + r, \quad H_{\omega+r}(x) = 2(x + r),$$
Unprovability of termination (end)

• Proposition: For b a 3-braid with $\text{ord}(b) = \beta$ and $k \geq 0$:
 $$T(b \sigma_1^k) \geq \text{H}_\beta(k).$$

 the length of the G_3-sequence from...

 “Hardy hierarchy” of functions:
 $$\text{H}_0(x) = x,$$
 $$\text{H}_{\alpha+1}(x) := \text{H}_\alpha(x + 1),$$
 $$\text{H}_{\lambda}(x) := \text{H}_{\lambda[x]}(x)$$
 for limit λ.

• Examples: For r in \mathbb{N}:
 $$\text{H}_r(x) = x + r,$$
 $$\text{H}_{\omega+r}(x) = 2(x + r),$$
 $$\text{H}_{\omega \cdot 2}(x) = 4x,$$
• Proposition: For b a 3-braid with $\text{ord}(b) = \beta$ and $k \geq 0$:

$$T(b\sigma_1^k) \geq H_\beta(k).$$

the length of the G_3-sequence from...

“Hardy hierarchy” of functions:

$$H_0(x) = x, \quad H_{\alpha+1}(x) := H_\alpha(x + 1),$$

$$H_\lambda(x) := H_{\lambda[x]}(x) \text{ for limit } \lambda$$

• Examples: For r in \mathbb{N}:

$$H_r(x) = x + r, \quad H_{\omega+r}(x) = 2(x + r),$$

H_ω is the Ackerman function, ...

$I\Sigma_1$ does not prove the totality of the Ackermann function, hence it cannot prove the finiteness of G_3-sequences of braids.
Proposition: For b a 3-braid with $\text{ord}(b) = \beta$ and $k \geq 0$:

$$T(b \sigma_1^k) \geq H_\beta(k).$$

the length of the G_3-sequence from...

“Hardy hierarchy” of functions:

$$H_0(x) = x, \quad H_{\alpha+1}(x) := H_{\alpha}(x + 1),$$

$$H_\lambda(x) := H_\lambdax \text{ for limit } \lambda$$

Examples: For r in \mathbb{N}:

$$H_r(x) = x + r, \quad H_{\omega+r}(x) = 2(x + r),$$

$H_{\omega.2}(x) = 4x, \ldots,$

H_ω is the Ackerman function, ...

Corollary: $T(\sigma_{[k]} \sigma_{[k-1]}^2 \ldots \sigma_1^2 \sigma_2 \sigma_1^k) \geq H_{\omega}(k)$.
• Proposition: For b a 3-braid with $\text{ord}(b) = \beta$ and $k \geq 0$:

$$T(b\sigma_1^k) \geq H_\beta(k).$$

the length of the G_3-sequence from...

“Hardy hierarchy” of functions:

$$H_0(x) = x, \quad H_{\alpha+1}(x) := H_\alpha(x + 1),$$

$$H_\lambda(x) := H_\lambdax \text{ for limit } \lambda$$

• Examples: For r in \mathbb{N}:

$$H_r(x) = x + r, \quad H_{\omega+r}(x) = 2(x + r),$$

$$H_{\omega.2}(x) = 4x, \ldots, \quad H_{\omega} \text{ is the Ackermann function,} \ldots$$

• Corollary: $T(\sigma_{[k]} \sigma_{[k-1]}^2 \cdots \sigma_1^2 \sigma_2 \sigma_1^k) \geq H_{\omega}(k).$

$\therefore I\Sigma_1$ does not prove the totality of the Ackermann function, hence it cannot prove the finiteness of G_3-sequences of braids.
The combinatorial principle WO_f

- So far: G_3-sequences = particular descending sequences of braids.
The combinatorial principle WO_f

- So far: G_3-sequences $= \text{particular}$ descending sequences of braids.
- Now: arbitrary descending sequences of braids.
The combinatorial principle WO_f

- So far: G_3-sequences $=$ particular descending sequences of braids.
- Now: arbitrary descending sequences of braids.

- Standard notion of complexity for a braid: the canonical length.
The combinatorial principle WO_f

- So far: G_3-sequences = particular descending sequences of braids.
- Now: arbitrary descending sequences of braids.

- Standard notion of complexity for a braid: the canonical length.

 Definition: $\|b\| \leq k$ if b is a divisor of Δ_3^k, where $\Delta_3 = \sigma_1 \sigma_2 \sigma_1$.

 Trivial: finitely many braids with bounded complexity.

- Definition: For $f: \mathbb{N} \rightarrow \mathbb{N}$, let WO_f be the combinatorial principle:

 For each k, there exists m s.t. there exists no descending sequence (b_0, \ldots, b_m) in B_3 satisfying $\|b_i\| \leq k + f(i)$ for each i.

 Trivial: $WO_{constant}$ is true.
The combinatorial principle \(\textit{WO}_f \)

- So far: \(G_3 \)-sequences = \textit{particular} descending sequences of braids.
- Now: \textit{arbitrary} descending sequences of braids.

- Standard notion of complexity for a braid: the \textit{canonical length}.

 \textbf{Definition:} \(\| b \| \leq k \) if \(b \) is a divisor of \(\Delta_3^k \), where \(\Delta_3 = \sigma_1 \sigma_2 \sigma_1 \).

- Fact: For each \(k \), there exists \(m \) s.t. there exists no descending sequence \((b_0, \ldots, b_m)\) in \(B_3 \) satisfying \(\| b_i \| \leq k \) for each \(i \).
The combinatorial principle WO_f

- So far: G_3-sequences = particular descending sequences of braids.
- Now: arbitrary descending sequences of braids.

- Standard notion of complexity for a braid: the canonical length.

 Definition: $\|b\| \leq k$ if b is a divisor of Δ_k^3, where $\Delta_3 = \sigma_1 \sigma_2 \sigma_1$.

- Fact: For each k, there exists m s.t. there exists no descending sequence $(b_0, ..., b_m)$ in B_3 satisfying $\|b_i\| \leq k$ for each i.

 Trivial: finitely many braids with bounded complexity. \square
The combinatorial principle WO_f

- So far: G_3-sequences = particular descending sequences of braids.
 - Now: arbitrary descending sequences of braids.

- Standard notion of complexity for a braid: the canonical length.

 Definition: $\|b\| \leq k$ if b is a divisor of Δ^k_3, where $\Delta_3 = \sigma_1 \sigma_2 \sigma_1$.

- Fact: For each k, there exists m s.t. there exists no descending sequence $(b_0, ..., b_m)$ in B_3 satisfying $\|b_i\| \leq k$ for each i.

 Trivial: finitely many braids with bounded complexity. □

- Definition: For $f : \mathbb{N} \rightarrow \mathbb{N}$, let WO_f be the combinatorial principle:
The combinatorial principle WO_f

- So far: G_3-sequences = particular descending sequences of braids.
- Now: arbitrary descending sequences of braids.

- Standard notion of complexity for a braid: the canonical length.

 Definition: $\|b\| \leq k$ if b is a divisor of Δ_3^k, where $\Delta_3 = \sigma_1 \sigma_2 \sigma_1$.

- Fact: For each k, there exists m s.t. there exists no descending sequence (b_0, \ldots, b_m) in B_3 satisfying $\|b_i\| \leq k$ for each i.

 Trivial: finitely many braids with bounded complexity.

- Definition: For $f : \mathbb{N} \rightarrow \mathbb{N}$, let WO_f be the combinatorial principle: For each k, there exists m s.t. there exists no descending sequence (b_0, \ldots, b_m) in B_3 satisfying $\|b_i\| \leq k + f(i)$ for each i.
The combinatorial principle WO_f

- So far: G_3-sequences = particular descending sequences of braids.
 \leadsto Now: arbitrary descending sequences of braids.

- Standard notion of complexity for a braid: the canonical length.

 Definition: $\|b\| \leq k$ if b is a divisor of Δ_3^k, where $\Delta_3 = \sigma_1 \sigma_2 \sigma_1$.

- Fact: For each k, there exists m s.t. there exists no descending sequence $(b_0, ..., b_m)$ in B_3 satisfying $\|b_i\| \leq k$ for each i.

 Trivial: finitely many braids with bounded complexity. □

- Definition: For $f : \mathbb{N} \to \mathbb{N}$, let WO_f be the combinatorial principle:
 For each k, there exists m s.t. there exists no descending sequence $(b_0, ..., b_m)$ in B_3 satisfying $\|b_i\| \leq k + f(i)$ for each i.

 \leadsto Trivial: $WO_{constant}$ is true.
• Proposition: For each f, the principle WO_f is true.
• Proposition: For each \(f \), the principle \(WO_f \) is true.

Proof: - Build a tree of descending sequences ordered by extension;
• Proposition: For each f, the principle WO_f is true.

Proof: - Build a tree of descending sequences ordered by extension;
 - This tree is finitely branching because \exists finitely many braids with given canonical length;
Proposition: For each f, the principle WO_f is true.

Proof: - Build a tree of descending sequences ordered by extension;
 - This tree is finitely branching because \exists finitely many braids
 with given canonical length;
 - Apply König’s lemma.

Question: Where is the transition between $I\Sigma_1$-provability and $I\Sigma_1$-unprovability?
Proposition: For each f, the principle WO_f is true.

Proof: - Build a tree of descending sequences ordered by extension;
 - This tree is finitely branching because \exists finitely many braids with given canonical length;
 - Apply König’s lemma.

Two easy remarks:
- $WO_{constant}$ is provable in $I\Sigma_1$
• Proposition: For each f, the principle WO_f is true.

Proof: - Build a tree of descending sequences ordered by extension;
 - This tree is finitely branching because \exists finitely many braids
 with given canonical length;
 - Apply König’s lemma.

• Two easy remarks:
 - $WO_{constant}$ is provable in $I\Sigma_1$ \leftarrow counting argument valid;
• Proposition: For each \(f \), the principle \(\text{WO}_f \) is true.

Proof: - Build a tree of descending sequences ordered by extension;
 - This tree is finitely branching because \(\exists \) finitely many braids with given canonical length;
 - Apply König’s lemma.

• Two easy remarks:
 - \(\text{WO}_{\text{constant}} \) is provable in \(I\Sigma_1 \) ← counting argument valid;
 - \(\text{WO}_{\text{square}} \) is unprovable in \(I\Sigma_1 \)
• Proposition: For each f, the principle WO_f is true.

Proof: - Build a tree of descending sequences ordered by extension;
 - This tree is finitely branching because \exists finitely many braids with given canonical length;
 - Apply König’s lemma.
 □

• Two easy remarks:
 - $WO_{constant}$ is provable in $I\Sigma_1$ ← counting argument valid;
 - WO_{square} is unprovable in $I\Sigma_1$ ← G_3-sequences would witness.
Phase transition

Proposition: For each f, the principle WO_f is true.

Proof:
- Build a tree of descending sequences ordered by extension;
- This tree is finitely branching because \exists finitely many braids with given canonical length;
- Apply König’s lemma. □

Two easy remarks:
- $WO_{constant}$ is provable in $I\Sigma_1$ ← counting argument valid;
- WO_{square} is unprovable in $I\Sigma_1$ ← G_3-sequences would witness.

Question: Where is the transition between $I\Sigma_1$-provability and $I\Sigma_1$-unprovability?
• Notation: - Ack_ω for the Ackermann function;
• Notation: - Ack_ω for the Ackermann function;
 - Ack_r for the rth approximation to Ack_ω;
• Notation: - Ack_ω for the Ackermann function;
 - Ack_r for the rth approximation to Ack_ω;
 - Ack^{-1} for the functional inverse of Ack:
 $$\text{Ack}^{-1}(n) = p \text{ if } \text{Ack}(p) \leq n < \text{Ack}(p + 1);$$
Phase transition (continued)

- Notation: - Ack_ω for the Ackermann function;
 - Ack_r for the rth approximation to Ack_ω;
 - Ack^{-1} for the functional inverse of Ack:
 Acknowledgment

 $Ack^{-1}(n) = p$ if $Ack(p) \leq n < Ack(p + 1);$
 \implies a very slow growing function
• Notation: - Ack_ω for the Ackermann function;
 - Ack_r for the rth approximation to Ack_ω;
 - Ack^{-1} for the functional inverse of Ack:
 $$\text{Ack}^{-1}(n) = p \text{ if } \text{Ack}(p) \leq n < \text{Ack}(p + 1);$$
 \Rightarrow a very slow growing function

• Theorem: For $r \leq \omega$ put $f_r(x) := \lfloor \text{Ack}^{-1}_r(x) \sqrt{x} \rfloor$. Then:
- Notation: - Ack_{ω} for the Ackermann function;
 - Ack_r for the rth approximation to Ack_{ω};
 - Ack^{-1} for the functional inverse of Ack:
 \[
 \text{Ack}^{-1}(n) = p \text{ if } \text{Ack}(p) \leq n < \text{Ack}(p + 1);
 \]
 \[\Rightarrow \text{ a very slow growing function}\]

- Theorem: For $r \leq \omega$ put $f_r(x) := \left\lfloor \text{Ack}_{r}^{-1}(x) \sqrt{x} \right\rfloor$. Then:
 (i) WO_{f_r} is provable from $I\Sigma_1$ for each finite r.

Phase transition (continued)

- Notation: - Ack_ω for the Ackermann function;
 - Ack_r for the rth approximation to Ack_ω;
 - Ack^{-1} for the functional inverse of Ack:
 $\text{Ack}^{-1}(n) = p$ if $\text{Ack}(p) \leq n < \text{Ack}(p + 1)$;
 \Rightarrow a very slow growing function

- Theorem: For $r \leq \omega$ put $f_r(x) := \lceil \text{Ack}^{-1}_r(x) \sqrt{x} \rceil$. Then:
 (i) WO_{f_r} is provable from $I\Sigma_1$ for each finite r.
 (ii) WO_{f_ω} is not provable from $I\Sigma_1$.
• Notation: - Ack_ω for the Ackermann function;
 - Ack_r for the rth approximation to Ack_ω;
 - Ack^{-1} for the functional inverse of Ack:
 \[
 \text{Ack}^{-1}(n) = p \text{ if } \text{Ack}(p) \leq n < \text{Ack}(p + 1);
 \]
 \[
 \leadsto \text{ a very slow growing function}
 \]

• Theorem: For $r \leq \omega$ put $f_r(x) := \lceil \text{Ack}^{-1}_r(x) \sqrt{x} \rceil$. Then:
 (i) WO_{f_r} is provable from $I\Sigma_1$ for each finite r.
 (ii) WO_{f_ω} is not provable from $I\Sigma_1$.

• Key point: Fine counting arguments in B_3, namely evaluating
 \[
 \text{card}\{b \in B_3 \mid \|b\| \leq \ell \ \& \ b < \Delta^k_3\}.
 \]
• Let $S_{k, \ell} := \{ b \in B_3 \mid \|b\| \leq \ell \ \& \ b < \Delta_3^k \}$.
• Let $S_{k,\ell} := \{ b \in B_3 \mid \| b \| \leq \ell \ & b < \Delta_3^k \}$.

• Proposition: For $\ell \geq k \geq 1$:

$$\text{card}(S_{k,\ell}) = \sum_{m=1}^{k} \left(\binom{\ell + 3}{m + 1} \right) - k + 1.$$
Braid counting

- Let $S_{k,\ell} := \{ b \in B_3 \mid \|b\| \leq \ell \, \& \, b < \Delta_3^k \}$.

- **Proposition:** For $\ell \geq k \geq 1$:

 $$\text{card}(S_{k,\ell}) = \sum_{m=1}^{k} \binom{\ell + 3}{m + 1} - k + 1.$$

- Proof: Explicitly construct the $<$-increasing enumeration of $\{ b \mid \|b\| \leq \ell \}$ by means of a Pascal triangle. □
• Let $S_{k,\ell} := \{ b \in B_3 \mid \|b\| \leq \ell \ \& \ \ b < \Delta_3^k \}$.

• Proposition: For $\ell \geq k \geq 1$:

$$
\text{card}(S_{k,\ell}) = \sum_{m=1}^{k} \binom{\ell + 3}{m + 1} - k + 1.
$$

- Proof: Explicitly construct the $<$-increasing enumeration of $\{ b \mid \|b\| \leq \ell \}$ by means of a Pascal triangle. □

• Corollary: - $\text{card}(S_{k,\ell}) \leq (\ell + 3)^{k+2}$ for $\ell \geq k \geq 1$.
• Let $S_{k, \ell} := \{ b \in B_3 \mid \|b\| \leq \ell \ \& \ b < \Delta^k_3 \}$.

• Proposition: For $\ell \geq k \geq 1$:

$$\text{card}(S_{k, \ell}) = \sum_{m=1}^{k} \binom{\ell + 3}{m + 1} - k + 1.$$

- Proof: Explicitly construct the $<$-increasing enumeration of $\{ b \mid \|b\| \leq \ell \}$ by means of a Pascal triangle. □

• Corollary: - $\text{card}(S_{k, \ell}) \leq (\ell + 3)^{k+2}$ for $\ell \geq k \geq 1$.

- $\text{card}(S_{k, \ell}) \geq \ell^{k+1}/2(k + 1)!$ for $k \geq 1$ and $\ell \gg 1$.
• Extension to n-braids: Two solutions developed so far:
• Extension to \(n \)-braids: Two solutions developed so far:
 - (Bovykin–Carlucci) Use the Burckel normal form of \(n \)-braids;
 - Use an inductive definition based on the flip splitting of \(n \)-braids:
• Extension to n-braids: **Two** solutions developed so far:
 - (Bovykin–Carlucci) Use the Burckel normal form of n-braids;
 - Use an inductive definition based on the **flip splitting** of n-braids:
• Extension to n-braids: **Two** solutions developed so far:
 - (Bovykin–Carlucci) Use the Burckel normal form of n-braids;
 - Use an inductive definition based on the *flip splitting* of n-braids:

Proposition: Every braid in B_n^+ admits a unique decomposition

$$b = \phi_n^{p-1} b_p \cdot \ldots \cdot \phi_n^2 b_3 \cdot \phi_n b_2 \cdot b_1$$

with b_p, \ldots, b_1 in B_{n-1}^+
Extension to n-braids: Two solutions developed so far:
- (Bovykin–Carlucci) Use the Burckel normal form of n-braids;
- Use an inductive definition based on the flip splitting of n-braids:

Proposition: Every braid in B_n^+ admits a unique decomposition

$$b = \phi_{n}^{p-1}b_p \cdot \ldots \cdot \phi_n^2b_3 \cdot \phi_n b_2 \cdot b_1$$

with b_p, \ldots, b_1 in B_{n-1}^+ and, for each k, the only σ_k that is a right divisor of $\phi_n^{p-k}b_p \cdot \ldots \cdot \phi_n b_{k+1} \cdot b_k$ is σ_1.

A notion of G_∞-sequence similar to G_3-sequence, but involving arbitrary braids instead of 3-braids.
Extension to n-braids: Two solutions developed so far:
- (Bovykin–Carlucci) Use the Burckel normal form of n-braids;
- Use an inductive definition based on the flip splitting of n-braids:

Proposition: Every braid in B^+_n admits a unique decomposition
\[b = \phi_{n-1}^b b_p \cdots \phi_2 b_3 \cdot \phi_n b_2 \cdot b_1 \]
with b_p, \ldots, b_1 in B^+_{n-1} and, for each k, the only σ_k that is a right divisor of $\phi_{n-k}^b b_p \cdots \phi_n b_{k+1} \cdot b_k$ is σ_1.

↑ the flip automorphism of B^+_n that maps σ_i to σ_{n-i} for each i
• Extension to n-braids: Two solutions developed so far:
 - (Bovykin–Carlucci) Use the Burckel normal form of n-braids;
 - Use an inductive definition based on the flip splitting of n-braids:

• Proposition: Every braid in B_n^+ admits a unique decomposition
 \[b = \phi_n^{p-1} b_p \cdot \ldots \cdot \phi_n^2 b_3 \cdot \phi_n b_2 \cdot b_1 \]
 with b_p, \ldots, b_1 in B_{n-1}^+ and, for each k, the only σ_k that is a right divisor of $\phi_n^{p-k} b_p \cdot \ldots \cdot \phi_n b_{k+1} \cdot b_k$ is σ_1.

 the flip automorphism of B_n^+
 that maps σ_i to σ_{n-i} for each i

• Main point: The order on n-braids is a ShortLex-extension of
 the order on $(n - 1)$-braids.
• Extension to \(n \)-braids: Two solutions developed so far:
 - (Bovykin–Carlucci) Use the Burckel normal form of \(n \)-braids;
 - Use an inductive definition based on the flip splitting of \(n \)-braids:

 Proposition: Every braid in \(B_n^+ \) admits a unique decomposition
 \[
 b = \phi_n^{p-1} b_p \cdot \ldots \cdot \phi_n^2 b_3 \cdot \phi_n b_2 \cdot b_1
 \]
 with \(b_p, \ldots, b_1 \) in \(B_{n-1}^+ \) and, for each \(k \), the only \(\sigma_k \) that is a right divisor of \(\phi_n^{p-k} b_p \cdot \ldots \cdot \phi_n b_{k+1} \cdot b_k \) is \(\sigma_1 \).

 the flip automorphism of \(B_n^+ \)
 that maps \(\sigma_i \) to \(\sigma_{n-i} \) for each \(i \)

• Main point: The order on \(n \)-braids is a ShortLex-extension of
the order on \((n - 1)\)-braids.

\[
\rightsquigarrow \text{ A notion of } G_\infty\text{-sequence similar to } G_3\text{-sequence,}
\text{ but involving arbitrary braids instead of 3-braids.} \]
Now:

- Proposition B: Every G_∞-sequence is finite.
Another unprovability result

Now:

- Proposition B: Every G_∞-sequence is finite.

 - Proof: G_∞-sequences are descending in a well-order.
Now:

- Proposition B: Every G_∞-sequence is finite.

 - Proof: G_∞-sequences are descending in a well-order.

But:
Now:

- Proposition B: Every G_∞-sequence is finite.

- Proof: G_∞-sequences are descending in a well-order. □

But:

- Theorem: Proposition B cannot be proved in $I\Sigma_2$.
Now:

- **Proposition B**: Every G_∞-sequence is finite.

 - Proof: G_∞-sequences are descending in a well-order. □

But:

- **Theorem**: Proposition B cannot be proved in $I\Sigma_2$.

The subsystem of Peano arithmetic in which induction is restricted to formulas with two $\exists\forall$ quantifiers.
Another unprovability result

Now:

- **Proposition B:** Every G_∞-sequence is finite.

- Proof: G_∞-sequences are descending in a well-order. □

But:

- **Theorem:** Proposition B cannot be proved in $I\Sigma_2$.

 the subsystem of Peano arithmetic in which induction
 is restricted to formulas with two $\exists \forall$ quantifiers

- Proof: Compare the length function of G_∞-sequences with the
 Hardy function $H_{\omega \omega}$, whose totality cannot be proved in $I\Sigma_2$. □
Another unprovability result

Now:

- Proposition B: Every G_∞-sequence is finite.

 - Proof: G_∞-sequences are descending in a well-order. □

But:

- Theorem: Proposition B cannot be proved in $I\Sigma_2$.

 - Proof: Compare the length function of G_∞-sequences with the Hardy function $H_{\omega\omega}$, whose totality cannot be proved in $I\Sigma_2$. □
P. Dehornoy,

Alternating normal forms for braids and locally Garside monoids

math.GR/0702592.
P. Dehornoy,
Alternating normal forms for braids and locally Garside monoids
math.GR/0702592.

P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest,
Why are braids orderable?
P. Dehornoy,
Alternating normal forms for braids and locally Garside monoids
math.GR/0702592.

P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest,
Why are braids orderable?

http://www.math.unicaen.fr/~dehornoy