THE GROUP OF PARENTHESIZED BRAIDS
Patrick Dehornoy

Laboratoire de Mathématiques
Nicolas Oresme, Caen
• An extended braid group B that includes
• An extended braid group B that includes
 - Artin's braid group B_{∞}, and
• An extended braid group B that includes
 - Artin's braid group B_{∞}, and
 - Thompson's group F,
• An extended braid group B that includes
 - Artin's braid group B_∞, and
 - Thompson's group F,

and occurs in various contexts:
 - “geometry groups of algebraic laws”,

• An extended braid group B that includes
 - Artin's braid group B_∞, and
 - Thompson's group F,

and occurs in various contexts:
 - “geometry groups of algebraic laws”,
 - subgroup of M.Brin's braided Thompson's group BV,
 - also connected (quotient) with groups introduced
 by Greenberg–Sergiescu, Funar–Kapoudjian, ...
• An extended braid group B that includes
 - Artin's braid group B_∞, and
 - Thompson's group F,

and occurs in various contexts:
 - “geometry groups of algebraic laws”,
 - subgroup of M. Brin's braided Thompson's group BV,
 - also connected (quotient) with groups introduced
 by Greenberg–Sergiescu, Funar–Kapoudjian, ...

• Name “parenthesized braids” after D. Bar Natan (⇝⇝⇝⇝⇝⇝⇝⇝⇝ category)
• An extended braid group B that includes
 - Artin's braid group B_{∞}, and
 - Thompson's group F,

and occurs in various contexts:
 - “geometry groups of algebraic laws”,
 - subgroup of M.Brin's braided Thompson's group BV,
 - also connected (quotient) with groups introduced
 by Greenberg–Sergiescu, Funar–Kapoudjian, ...

• Name “parenthesized braids” after D. Bar Natan (category)

• Here: Insist on
 - similarity with B_{∞}, in particular
 possibility of using self-distributivity via diagram colourings,
• An extended braid group B that includes
 - Artin's braid group B_∞, and
 - Thompson's group F,

and occurs in various contexts:
 - “geometry groups of algebraic laws”,
 - subgroup of M.Brin's braided Thompson's group BV,
 - also connected (quotient) with groups introduced by Greenberg–Sergiescu, Funar–Kapoudjian, ...

• Name “parenthesized braids” after D. Bar Natan (category)

• Here: Insist on
 - similarity with B_∞, in particular
 possibility of using self-distributivity via diagram colourings,
 - connection with homeomorphisms of $S^2 \setminus$ Cantor.
Def. (R. Thompson, 1965): \(F := \langle x_0, x_1, \ldots ; x_j x_i = x_i x_{j+1} \text{ for } j > i \rangle \).
• Def. (R. Thompson, 1965): $F := \langle x_0, x_1, ... ; x_j x_i = x_i x_{j+1} \text{ for } j > i \rangle$.

$F \cong \{ \text{piecewise linear orientation preserving homeo's of } [0, 1] \text{ with dyadic discontinuities of the derivative and slopes of the form } 2^k \}$.
Thompson's Group F

- Def. (R. Thompson, 1965): $F := \langle x_0, x_1, \ldots ; x_j x_i = x_i x_{j+1} \text{ for } j > i \rangle$.
- $F \simeq \{\text{piecewise linear orientation preserving homeo's of } [0, 1] \text{ with dyadic discontinuities of the derivative and slopes of the form } 2^k\}$.

Also represented as

- x_0 as a continuous function from $[0, 1]$ to $[0, 1]$.
- x_1 as a continuous function from $[0, 1]$ to $[0, 1]$.
Def. (R. Thompson, 1965): \(F := \langle x_0, x_1, \ldots ; x_j x_i = x_i x_{j+1} \text{ for } j > i \rangle \).

\(F \cong \{ \text{piecewise linear orientation preserving homeo's of } [0, 1] \text{ with dyadic discontinuities of the derivative and slopes of the form } 2^k \} \).

\(x_0 \mapsto x_1 \mapsto \ldots \) also represented as

\(x_0 \mapsto x_1 \mapsto \text{one element of } F = \text{a pair of dyadic decompositions of } [0, 1] \):
• Def. (R. Thompson, 1965): $F := \langle x_0, x_1, \ldots ; x_j x_i = x_i x_{j+1} \text{ for } j > i \rangle$.

$F \simeq \{\text{piecewise linear orientation preserving homeo's of } [0, 1] \text{ with dyadic discontinuities of the derivative and slopes of the form } 2^k \}$.

\leadsto one element of F = a pair of dyadic decompositions of $[0, 1]$

\leadsto also: a pair of finite binary rooted trees.
• Ordinary braid diagrams:
Ordinary braid diagrams:

← initial positions: ● ● ● ●

← final positions: ● ● ● ●
• Ordinary braid diagrams:

\[\begin{array}{c}
\text{initial positions:} \quad \bullet \bullet \bullet \bullet \\
\text{final positions:} \quad \bullet \bullet \bullet \bullet \\
\end{array} \]

\[\begin{array}{c}
\xrightarrow{\text{one elementary pattern: crossing } \sigma_i} \\
\begin{array}{c}
1 \quad 2 \\
i \quad i+1
\end{array}
\end{array} \]
- Ordinary braid diagrams:

\[\begin{array}{c}
\downarrow \downarrow \downarrow \downarrow \downarrow \\
\text{initial positions:} \quad \bullet \quad \bullet \quad \bullet \quad \bullet \\
\end{array} \]

\[\begin{array}{c}
\downarrow \downarrow \downarrow \downarrow \downarrow \\
\text{final positions:} \quad \bullet \quad \bullet \quad \bullet \quad \bullet \\
\end{array} \]

\[\begin{array}{c}
\downarrow \downarrow \downarrow \downarrow \downarrow \\
\text{one elementary pattern: crossing } \sigma_i : \quad 1 \quad 2 \quad i \quad i+1 \\
\end{array} \]

- Parenthesised braid diagrams:
• Ordinary braid diagrams:
 ← initial positions: • • • •
 ← final positions: • • • •
 ⇝⇝⇝⇝⇝⇝⇝⇝⇝ one elementary pattern: crossing σ_i:

• Parenthesized braid diagrams:
 ← initial positions: • • • •
 ← final positions: • • •
• Ordinary braid diagrams:

← initial positions: • • • •

← final positions: • • • •

⇝⇝⇝⇝⇝⇝⇝⇝⇝ one elementary pattern: crossing σ_i:

\[
1 \quad 2 \quad i \quad i+1
\]

• Parenthesized braid diagrams:

← initial positions: (• •)

← final positions: •(• •)
• Ordinary braid diagrams:

\[
\begin{array}{c}
\rightarrow \\
\begin{array}{c}
\text{initial positions:} \\
\bullet \bullet \bullet \bullet \\
\end{array} \\
\rightarrow \\
\begin{array}{c}
\text{final positions:} \\
\bullet \bullet \bullet \bullet \\
\end{array}
\end{array}
\]

\[\Rightarrow\] one elementary pattern: crossing $\sigma_i : 1 \ 2 \ i \ i+1

• Parenthesized braid diagrams:

\[
\begin{array}{c}
\rightarrow \\
\begin{array}{c}
\text{initial positions:} \\
(\bullet \bullet) \\
\end{array} \\
\rightarrow \\
\begin{array}{c}
\text{final positions:} \\
\bullet (\bullet \bullet) \\
\end{array}
\end{array}
\]

\[\Rightarrow\] two elementary patterns: crossing $\sigma_i : 1 \ 2 \ i \ i+1
• Ordinary braid diagrams:

← initial positions: • • • •
← final positions: • • • •
⇝⇝⇝⇝⇝⇝⇝⇝⇝ one elementary pattern: crossing σ_i:

1 2 i $i+1$

• Parenthesized braid diagrams:

← initial positions: (• •)
← final positions: •(• •)
⇝⇝⇝⇝⇝⇝⇝⇝⇝ two elementary patterns: crossing σ_i:

1 2 i $i+1$

• Parenthesized braid diagrams:

← initial positions: (• •)
← final positions: •(• •)
⇝⇝⇝⇝⇝⇝⇝⇝⇝ two elementary patterns: crossing σ_i:

1 2 i $i+1$

• Parenthesized braid diagrams:

← initial positions: (• •)
← final positions: •(• •)
⇝⇝⇝⇝⇝⇝⇝⇝⇝ two elementary patterns: crossing σ_i:

1 2 i $i+1$
More precisely:

\[\sigma_i \rightsquigarrow 1 \ 2 \ 3 \ 4 \ \cdots \ i \ i+1 \]
More precisely:

\[\sigma_i \sim \quad 1 \quad 2 \quad \ldots \quad i \quad i+1 \]

everything in \([i, i+1)\) crosses over everything in \([i+1, i+2)\)
More precisely:

$$\sigma_i \sim \begin{array}{c}
1 \quad 2 \quad \cdots \quad i \quad i+1
\end{array}$$

everything in $[i, i+1)$ crosses over everything in $[i+1, i+2)$

$$a_i \sim \begin{array}{c}
1 \quad 2 \quad \cdots \quad i \quad i+1
\end{array}$$
• More precisely:

\[\sigma_i \sim \cdots \sim \ \text{everything in } [i, i + 1) \text{ crosses over everything in } [i + 1, i + 2) \]

\[a_i \sim \cdots \sim \ \text{preserved} \]
More precisely:

\[\sigma_i \sim \quad \text{everything in } [i, i+1) \text{ crosses over everything in } [i+1, i+2) \]

\[a_i \sim \quad \text{preserved everything in } [i, i+1) \text{ is shrunked by an } \varepsilon \text{ factor} \]
• More precisely:

\[\sigma_i \sim \quad 1 \quad 2 \quad \cdots \quad i \quad i+1 \]

everything in \([i, i+1)\) crosses over everything in \([i+1, i+2)\)

\[a_i \sim \quad 1 \quad 2 \quad \cdots \quad i \quad i+1 \]

preserved everything in \([i, i+1)\) is shrunk by a \(\varepsilon\) factor

translated everything in \([i+1, i+2)\) is translated
More precisely:

\[\sigma_i \sim \cdots \sim \]

\[
\begin{array}{c}
1 \\
2 \\
\vdots \\
i \\
i+1 \\
\end{array}
\]

everything in \([i, i+1)\) crosses over everything in \([i+1, i+2)\)

\[a_i \sim \cdots \sim \]

\[
\begin{array}{c}
1 \\
2 \\
\vdots \\
i \\
i+1 \\
\end{array}
\]

depicted as

- preserved
- translated

everything in \([i, i+1)\) is shrunked by a \(\varepsilon\) factor

can be formalized using (finite) trees and dyadic numbers
• To make a group B_∞ out of ordinary diagrams, use completion:

\[
\begin{array}{c}
\begin{array}{ccc}
\quad & \quad & \quad \\
\end{array}
\end{array}
\sim
\begin{array}{c}
\begin{array}{ccc}
\quad & \quad & \quad \\
\end{array}
\end{array}
\]
To make a group B_∞ out of ordinary diagrams, use completion:

\[\text{\includegraphics[width=0.4\textwidth]{diagram1}} \sim \text{\includegraphics[width=0.1\textwidth]{diagram2}} \sim \text{\includegraphics[width=0.3\textwidth]{diagram3}}, \ i.e., \quad \text{\includegraphics[width=0.1\textwidth]{diagram4}} \sim \text{\includegraphics[width=0.4\textwidth]{diagram5}} \]
To make a group B_{∞} out of ordinary diagrams, use completion:

\[
\begin{array}{c}
\begin{array}{c}
\vdots \\
\end{array} \quad \sim \quad \begin{array}{c}
\vdots \\
\end{array}
\end{array}
, \quad i.e., \quad \begin{array}{c}
\vdots \\
\end{array} \quad \sim \quad \begin{array}{c}
\cdot \\
\end{array}
\]

To make a group out of parenthesized diagrams, use similar completions:

\[
\begin{array}{c}
\begin{array}{c}
\cdot \\
\end{array}
\end{array} \quad \sim \quad \begin{array}{c}
\cdot \\
\end{array}
\]
To make a group B_∞ out of ordinary diagrams, use completion:

\[
\begin{array}{ccc}
\bullet \bullet \bullet & \sim \sim \sim & \bullet \bullet \bullet
\end{array}
\]
\[\text{, i.e.,} \]

\[
\begin{array}{ccc}
\bullet \bullet \bullet \bullet \bullet & \sim \sim \sim \sim \sim \sim
\end{array}
\]

To make a group out of parenthesized diagrams, use similar completions:

\[
\begin{array}{ccc}
\bullet \bullet \bullet & \sim \sim \sim & \bullet \bullet \bullet \bullet \bullet
\end{array}
\]

\[\sim \sim \sin
To make a group B_∞ out of ordinary diagrams, use completion:

$$\rightsquigarrow \rightsquigarrow \rightsquigarrow \rightsquigarrow \rightsquigarrow \rightsquigarrow \rightsquigarrow \rightsquigarrow , \text{ i.e., } \bullet \bullet \bullet \bullet \rightsquigarrow \bullet \bullet$$

To make a group out of parenthesized diagrams, use similar completions:

$$\rightsquigarrow \rightsquigarrow$$

Index positions by sequences of integers (or infinitesimals):

$$\rightsquigarrow$$

1 2 3

$$\bullet \bullet \bullet$$
• To make a group B_∞ out of ordinary diagrams, use completion:

\[
\begin{array}{c}
\includegraphics[width=0.3\textwidth]{ordinary_diagram} \\
\sim \sim \sim \sim \sim
\end{array}
\quad , \quad i.e.,
\begin{array}{c}
\includegraphics[width=0.3\textwidth]{completed_diagram} \\
\sim \sim
\end{array}
\]

• To make a group out of parenthesized diagrams, use similar completions:

\[
\begin{array}{c}
\includegraphics[width=0.3\textwidth]{parenthesized_diagram} \\
\sim \sim
\end{array}
\quad , \quad Index \ positions \ by \ sequences \ of \ integers \ (or \ infinitesimals):

\[
\begin{array}{c}
\includegraphics[width=0.3\textwidth]{indexed_diagram} \\
\sim \sim
\end{array}
\]

\[
\begin{array}{c}
\includegraphics[width=0.3\textwidth]{indexed_diagram2} \\
\sim \sim
\end{array}
\]

\[
\begin{array}{c}
\includegraphics[width=0.3\textwidth]{indexed_diagram3} \\
\sim \sim
\end{array}
\]
To make a group B_∞ out of ordinary diagrams, use completion:

\[
\begin{array}{cccc}
\nearrow & & & \\
\cdots & & & \\
\searrow & & & \\
\end{array}
\]

\[
\begin{array}{cccc}
\nearrow & & & \\
\cdots & & & \\
\searrow & & & \\
\end{array}
\]

To make a group out of parenthesized diagrams, use similar completions:

\[
\begin{array}{cccc}
\nearrow & & & \\
\cdots & & & \\
\searrow & & & \\
\end{array}
\]

\[
\begin{array}{cccc}
\nearrow & & & \\
\cdots & & & \\
\searrow & & & \\
\end{array}
\]

\[
\begin{array}{cccc}
\nearrow & & & \\
\cdots & & & \\
\searrow & & & \\
\end{array}
\]

Index positions by sequences of integers (or infinitesimals):

\[
\begin{array}{cccc}
\nearrow & & & \\
\cdots & & & \\
\searrow & & & \\
\end{array}
\]

\[
\begin{array}{cccc}
\nearrow & & & \\
\cdots & & & \\
\searrow & & & \\
\end{array}
\]

\[
\begin{array}{cccc}
\nearrow & & & \\
\cdots & & & \\
\searrow & & & \\
\end{array}
\]
To make a group B_∞ out of ordinary diagrams, use completion:

\[
\begin{array}{c}
\includegraphics{example1} \\
\sim\Rightarrow \includegraphics{example2}
\end{array}
\]

, i.e.,

\[
\begin{array}{c}
\includegraphics{example3} \\
\sim\Rightarrow \includegraphics{example4}
\end{array}
\]

To make a group out of parenthesized diagrams, use similar completions:

\[
\begin{array}{c}
\includegraphics{example5} \\
\sim\Rightarrow \includegraphics{example6}
\end{array}
\]

\[
\begin{array}{c}
\sim\Rightarrow \includegraphics{example7} \\
\sim\Rightarrow \includegraphics{example8}
\end{array}
\]

\[
\begin{array}{c}
\sim\Rightarrow \includegraphics{example9} \\
\sim\Rightarrow \includegraphics{example10}
\end{array}
\]

\[
\sim\Rightarrow \includegraphics{example11}
\]

Index positions by sequences of integers (or infinitesimals):

\[
\begin{array}{c}
\sim\Rightarrow \includegraphics{example12} \\
\sim\Rightarrow \includegraphics{example13}
\end{array}
\]

\[
\begin{array}{c}
\sim\Rightarrow \includegraphics{example14} \\
\sim\Rightarrow \includegraphics{example15}
\end{array}
\]

\[
\sim\Rightarrow \includegraphics{example16}
\]

\[
\sim\Rightarrow \includegraphics{example17}
\]
• To make a group B_∞ out of ordinary diagrams, use completion:

```
\[
\begin{array}{ccc}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\end{array} \quad \sim \quad \begin{array}{ccc}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\end{array}
\]
```

\[\sim, \text{ i.e.,} \quad \bullet \bullet \bullet \bullet \sim \bullet \bullet \bullet \bullet \]

• To make a group out of parenthesized diagrams, use similar completions:

```
\[
\begin{array}{ccc}
\bullet & \bullet & \bullet \\
\end{array} \sim \begin{array}{ccc}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\end{array}
\]
```

\[\sim \text{ Index positions by sequences of integers (or infinitesimals):} \]

```
\[
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array} \sim \begin{array}{ccc}
1 & 1,2 & 2,2,2,3 \sim \begin{array}{ccc}
1 & 2 & 3 \\
1+\epsilon & 2+\epsilon & \sim \begin{array}{ccc}
1 & 2 & 3 & 4 \\
\end{array}
\end{array}
\]
```

• Definition: $B := \{ \text{parenthesized braid diagrams} \}/ \text{isotopy}$.

• The following relations hold in B:
The following relations hold in B:

- **Commutation:**

 \[\sigma_i \sigma_j = \sigma_j \sigma_i, \quad \sigma_i a_j = a_j \sigma_i, \quad \text{for } j \geq i + 2, \]
The following relations hold in B:

commutation:
\[\sigma_i \sigma_j = \sigma_j \sigma_i \]

\[\sigma_i a_j = a_j \sigma_i \]

for $j \geq i + 2$,

"Thompson":
\[a_i \sigma_{j-1} = \sigma_j a_i \]

\[a_i a_{j-1} = a_j a_i \]

for $j \geq i + 2$.

The following relations hold in B:

commutation:

\[\sigma_i \sigma_j = \sigma_j \sigma_i \]

\[\sigma_i a_j = a_j \sigma_i \]

for $j \geq i + 2$,

"Thompson":

\[a_i \sigma_{j-1} = \sigma_j a_i \]

\[a_i a_{j-1} = a_{j-1} a_i \]

for $j \geq i + 2$,

braid:

\[\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \]

\[\sigma_i \sigma_{i+1} a_i = a_i \sigma_{i+1} \sigma_i \]

\[\sigma_{i+1} \sigma_i a_i = a_i \sigma_{i+1} \sigma_i \]
• The following relations hold in B:

commutation:

\[\sigma_i \sigma_j = \sigma_j \sigma_i \]

\[\sigma_i a_j = a_j \sigma_i \]

for $j \geq i + 2$,

“Thompson”:

\[a_i \sigma_{j-1} = \sigma_j a_i \]

\[a_i a_{j-1} = a_j a_i \]

for $j \geq i + 2$,

braid:

\[\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \]

\[\sigma_i \sigma_{i+1} a_i = a_{i+1} \sigma_i \sigma_i \]

\[\sigma_{i+1} \sigma_i a_i = a_i \sigma_i \sigma_{i+1} \]

Notation: $\tilde{B} :=$ the group presented by \uparrow;
The following relations hold in B:

- **commutation:**
 \[\sigma_i \sigma_j = \sigma_j \sigma_i \]
 \[\sigma_i a_j = a_j \sigma_i \]
 for $j \geq i + 2$,

- **“Thompson”:**
 \[a_i \sigma_{j-1} = \sigma_j a_i \]
 \[a_i a_{j-1} = a_j a_i \]
 for $j \geq i + 2$,

- **braid:**
 \[\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \]
 \[\sigma_i \sigma_{i+1} a_i = a_i \sigma_{i+1} \sigma_i \]
 \[\sigma_{i+1} \sigma_i a_i = a_i \sigma_{i+1} \sigma_i \]

- **Notation:** $\widetilde{B} :=$ the group presented by \uparrow; know $\widetilde{B} \rightarrow B$; want: $\widetilde{B} \simeq B$.
• Proposition: (M. Brin) The group \tilde{B} is finitely presented.
• Proposition: (M. Brin) The group \widetilde{B} is finitely presented.

generators: $\sigma_1, \sigma_2, a_1, a_2$

$e.g., \sigma_3 = a_1^{-1} \sigma_2 a_1 = \cdots$
ALGEBRAIC PROPERTIES OF \tilde{B}

- Proposition: (M. Brin) The group \tilde{B} is finitely presented.
 - Generators: $\sigma_1, \sigma_2, a_1, a_2$
 - Example: $\sigma_3 = a_1^{-1} \sigma_2 a_1$
 - The monoid with presentation...

- Proposition: The group \tilde{B} is a group of fractions for the monoid \tilde{B}^+, and
 - $\tilde{B} = (F^+)^{-1} \cdot B_\infty \cdot F^+$.
• Proposition: (M. Brin) The group \tilde{B} is finitely presented.

 generators: $\sigma_1, \sigma_2, a_1, a_2$

 e.g., $\sigma_3 = a_1^{-1} \sigma_2 a_1$

 the monoid with presentation . . .

• Proposition: The group \tilde{B} is a group of fractions for the monoid \tilde{B}^+, and

 $\tilde{B} = (F^+)^{-1} \cdot B_\infty \cdot F^+$.

 every parenthesized braid can be isotoped into a diagram of the type “dilatation + braid + contraction”.
ALGEBRAIC PROPERTIES OF \widetilde{B}

• Proposition: (M. Brin) The group \widetilde{B} is finitely presented.

 generators: $\sigma_1, \sigma_2, a_1, a_2$

 e.g., $\sigma_3 = a_1^{-1}\sigma_2 a_1 = \ldots$

 the monoid with presentation . . .

• Proposition: The group \widetilde{B} is a group of fractions for the monoid \widetilde{B}^+, and

 $\widetilde{B} = (F^+)^{-1} \cdot B_\infty \cdot F^+$.

 $\sim \sim \sim$ every parenthesized braid can be isotoped into a diagram
 of the type “dilatation + braid + contraction”.

• Also: locally Garside structure for \widetilde{B}^+.

 w.r.t. balanced generators A_α, Σ_α indexed by binary addresses
• Proposition: Let $\mathbf{sh} : \sigma_i \mapsto \sigma_{i+1}, a_i \mapsto a_{i+1}$ for each i.
• Proposition: Let \(\text{sh} : \sigma_i \mapsto \sigma_{i+1}, a_i \mapsto a_{i+1} \) for each \(i \). For \(g, h \) in \(\tilde{B} \), let

\[
g \ast h := g \cdot \text{sh}(h) \cdot \sigma_1 \cdot \text{sh}(h)^{-1},
\]

\[
g \circ h := g \cdot \text{sh}(h) \cdot a_1.
\]
Proposition: Let $\text{sh}: \sigma_i \mapsto \sigma_{i+1}, a_i \mapsto a_{i+1}$ for each i. For g, h in \tilde{B}, let

$$g \ast h := g \cdot \text{sh}(h) \cdot \sigma_1 \cdot \text{sh}(h)^{-1},$$

$$g \circ h := g \cdot \text{sh}(h) \cdot a_1.$$

Then (\tilde{B}, \ast, \circ) is an augmented LD-system.
• Proposition: Let $\text{sh} : \sigma_i \mapsto \sigma_{i+1}, a_i \mapsto a_{i+1}$ for each i. For g, h in \tilde{B}, let

$$g \ast h := g \cdot \text{sh}(h) \cdot \sigma_1 \cdot \text{sh}(h)^{-1},$$

$$g \circ h := g \cdot \text{sh}(h) \cdot a_1.$$

Then (\tilde{B}, \ast, \circ) is an augmented LD-system.

\[
\begin{align*}
\begin{cases}
 x \ast (y \ast z) &= (x \ast y) \ast (x \ast z) : \text{self-distributivity, "LD"} \\
 x \ast (y \ast z) &= (x \circ y) \ast z \\
 x \ast (y \circ z) &= (x \ast y) \circ (x \ast z)
\end{cases}
\end{align*}
\]
Proposition: Let \(\sigma_i \mapsto \sigma_{i+1}, a_i \mapsto a_{i+1} \) for each \(i \). For \(g, h \) in \(\widetilde{B} \), let

\[
g \ast h := g \cdot \text{sh}(h) \cdot \sigma_1 \cdot \text{sh}(h)^{-1},
\]

\[
g \circ h := g \cdot \text{sh}(h) \cdot a_1.
\]

Then \((\widetilde{B}, \ast, \circ) \) is an augmented LD-system.

\[
\begin{align*}
 x \ast (y \ast z) &= (x \ast y) \ast (x \ast z): \text{self-distributivity, “LD”} \\
 x \ast (y \circ z) &= (x \circ y) \ast z \\
 x \ast (y \circ z) &= (x \ast y) \circ (x \ast z)
\end{align*}
\]
• Braid diagram **colourings:**
Braid diagram **colourings**:
1. Put colours at input ends of strands
• Braid diagram *colourings*:
 1. Put colours at input ends of strands
 2. Propagate colours
• Braid diagram \textit{colourings}:
 1. Put colours at input ends of strands
 2. Propagate colours
 3. Look at output strands
• Braid diagram \textbf{colourings}:
 1. Put colours at input ends of strands
 2. Propagate colours
 3. Look at output strands

\[x \times y \]

some binary operation on colours
Braid diagram \textbf{colourings}:

1. Put colours at input ends of strands
2. Propagate colours
3. Look at output strands

Now: compatible with the braid relations iff \ast satisfies

\begin{equation}
(LD): \quad x \ast (y \ast z) = (x \ast y) \ast (x \ast z): \text{ the (left) self-distributivity law.}
\end{equation}
- **Braid diagram colourings:**
 1. Put colours at input ends of strands
 2. Propagate colours
 3. Look at output strands

- Now: compatible with the braid relations iff \ast satisfies

\[
x \ast (y \ast z) = (x \ast y) \ast (x \ast z)
\]

(LD): the (left) **self-distributivity** law.

- Remark: Also need \ast for negative crossings \Rightarrow “racks”
Braid diagram colourings:
1. Put colours at input ends of strands
2. Propagate colours
3. Look at output strands

Now: compatible with the braid relations iff \ast satisfies

\[(LD): \quad x \ast (y \ast z) = (x \ast y) \ast (x \ast z):\] the (left) self-distributivity law.

Remark: Also need $\bar{\ast}$ for negative crossings \iff “racks”

Classical examples:
- $x \ast y = y$ leads to $B_n \hookrightarrow S_n$;
- $x \ast y = x y x^{-1}$ leads to $B_n \leftrightarrow \text{Aut}(F_n)$;
- $x \ast y = (1 - t)x + ty$ leads to $B_n \rightarrow GL_n(\mathbb{Z}[t, t^{-1}])$.

Braid diagram colourings:
1. Put colours at input ends of strands
2. Propagate colours
3. Look at output strands

Now: compatible with the braid relations iff \ast satisfies

$$(LD): \quad x \ast (y \ast z) = (x \ast y) \ast (x \ast z): \text{ the (left) self-distributivity law.}$$

Remark: Also need $\bar{\ast}$ for negative crossings $\xrightarrow{\sim}$ “racks”

Classical examples:
- $x \ast y = y$ leads to $B_n \hookrightarrow S_n$;
- $x \ast y = x y x^{-1}$ leads to $B_n \hookrightarrow \text{Aut}(F_n)$;
- $x \ast y = (1 - t)x + ty$ leads to $B_n \rightarrow GL_n(\mathbb{Z}[t, t^{-1}])$.

Here: (\widetilde{B}, \ast) eligible for colouring.
• Proposition: $\mathcal{B} \simeq \tilde{\mathcal{B}}$, i.e., ... is a presentation for \mathcal{B}.
• Proposition: $B \cong \tilde{B}$, i.e., \ldots is a presentation for B.
 (no other relation in B than those of \tilde{B}.)
• Proposition: $B \cong \tilde{B}$, i.e., . . . is a presentation for B.
 (no other relation in B than those of \tilde{B}.)

• Sketch of proof (using the LD-structure):

For w a word in the letters $\sigma_i^{\pm 1}$ and $a_i^{\pm 1}$, let
• Proposition: \(B \cong \tilde{B} \), i.e., \(\ldots \) is a presentation for \(B \).

(no other relation in \(B \) than those of \(\tilde{B} \).)

• Sketch of proof (using the LD-structure):

For \(w \) a word in the letters \(\sigma_i^{\pm 1} \) and \(a_i^{\pm 1} \), let

\[
D(w) := \text{diagram coded by } w, \text{ and } \bar{w} := \text{element of } \tilde{B} \text{ represented by } w.
\]
Proposition: \(B \cong \tilde{B} \), i.e., \(\ldots \) is a presentation for \(B \).
(no other relation in \(B \) than those of \(\tilde{B} \).)

Sketch of proof (using the LD-structure):

For \(w \) a word in the letters \(\sigma_i^{\pm 1} \) and \(a_i^{\pm 1} \), let
\[D(w) := \text{diagram coded by } w, \text{ and } \overline{w} := \text{element of } \tilde{B} \text{ represented by } w. \]

Want to show that the isotopy class of \(D(w) \) determines \(\overline{w} \).
• Proposition: \(B \cong \tilde{B} \), i.e., ... is a presentation for \(B \).

(no other relation in \(B \) than those of \(\tilde{B} \).)

• **Sketch of proof** (using the LD-structure):

For \(w \) a word in the letters \(\sigma_i^{\pm 1} \) and \(a_i^{\pm 1} \), let

\[D(w) := \text{diagram coded by } w, \text{ and } \overline{w} := \text{element of } \tilde{B} \text{ represented by } w. \]

\[\rightsquigarrow \text{ Want to show that the isotopy class of } D(w) \text{ determines } \overline{w}. \]

Put colours \(\vec{x} \) from \(\tilde{B} \) on top of \(D(w) \).
• Proposition: $B \simeq \tilde{B}$, i.e., . . . is a presentation for B.
(no other relation in B than those of \tilde{B}.)

• Sketch of proof (using the LD-structure):

For w a word in the letters $\sigma_i^{\pm 1}$ and $a_i^{\pm 1}$, let

$$D(w) := \text{diagram coded by } w, \text{ and } \overline{w} := \text{element of } \tilde{B} \text{ represented by } w.$$

\leadsto Want to show that the isotopy class of $D(w)$ determines \overline{w}.

Put colours \vec{x} from \tilde{B} on top of $D(w)$.
• Proposition: \(B \cong \tilde{B}, \text{i.e.,} \ldots \) is a presentation for \(B \).
(no other relation in \(B \) than those of \(\tilde{B} \).)

• Sketch of proof (using the LD-structure):

For \(w \) a word in the letters \(\sigma_i^{\pm 1} \) and \(a_i^{\pm 1} \), let
\[
D(w) := \text{diagram coded by } w, \text{ and } \overline{w} := \text{element of } \tilde{B} \text{ represented by } w.
\]

\(\mapsto \) Want to show that the isotopy class of \(D(w) \) determines \(\overline{w} \).

Put colours \(\vec{x} \) from \(\tilde{B} \) on top of \(D(w) \).

Define \(\text{eval} : \{ \text{sequences from } \tilde{B} \} \rightarrow \tilde{B} \)
by \(\text{eval}(\vec{x}) := x_1 \cdot \text{sh}(x_2) \cdot \text{sh}^2(x_3) \cdot \ldots. \)
• Proposition: $B \simeq \tilde{B}$, i.e., ... is a presentation for B.
 (no other relation in B than those of \tilde{B}.)

• Sketch of proof (using the LD-structure):

For w a word in the letters $\sigma_i^{\pm1}$ and $a_i^{\pm1}$, let

$D(w) := \text{diagram coded by } w$, and $\overline{w} := \text{element of } \tilde{B} \text{ represented by } w$.

Want to show that the isotopy class of $D(w)$ determines \overline{w}.

Put colours \vec{x} from \tilde{B} on top of $D(w)$.

Define $\text{eval} : \{ \text{sequences from } \tilde{B} \} \rightarrow \tilde{B}$

by $\text{eval}(\vec{x}) := x_1 \cdot \text{sh}(x_2) \cdot \text{sh}^2(x_3) \cdot \ldots$.

Then we find $\text{eval}(\vec{x} \cdot D(w)) = \text{eval}(\vec{x}) \cdot \overline{w}$.
• Proposition: \(B \cong \tilde{B} \), i.e., \(\ldots \) is a presentation for \(B \).

(no other relation in \(B \) than those of \(\tilde{B} \).)

• **Sketch of proof** (using the LD-structure):

For \(w \) a word in the letters \(\sigma_i^{\pm 1} \) and \(a_i^{\pm 1} \), let

\[
D(w) := \text{diagram coded by } w, \text{ and } \overline{w} := \text{element of } \tilde{B} \text{ represented by } w.
\]

\(\leadsto \) Want to show that the isotopy class of \(D(w) \) determines \(\overline{w} \).

Put colours \(\tilde{x} \) from \(\tilde{B} \) on top of \(D(w) \).

Define \(\text{eval} : \{ \text{sequences from } \tilde{B} \} \to \tilde{B} \) by

\[
\text{eval}(\tilde{x}) := x_1 \cdot \text{sh}(x_2) \cdot \text{sh}^2(x_3) \cdot \ldots.
\]

Then we find \(\text{eval}(\tilde{x} \cdot D(w)) = \text{eval}(\tilde{x}) \cdot \overline{w} \).

\[\uparrow\]

under \(\text{eval} \), the action of \(D(w) \) on \(\tilde{B} \) becomes a multiplication. \(\Box \)
Proposition: The ALD-system \((B, \ast, \circ)\) is torsion free:
Each element of \(B\) generates a free subsystem.
• Proposition: The ALD-system \((B, \ast, \circ)\) is torsion free:
 Each element of \(B\) generates a free subsystem.

• Each parenthesized braid has a canonical expression in terms of special ones.

\[
\text{the closure of } 1 \text{ under } \ast \text{ and } \circ
\]
• Proposition: The ALD-system \((B, \ast, \circ)\) is torsion free:
 Each element of \(B\) generates a free subsystem.

• Each parenthesized braid has a canonical expression in terms of special ones.

• Proposition: The group \(B\) is orderable; more precisely:

\[\text{the closure of } 1 \text{ under } \ast \text{ and } \circ \]
MORE ABOUT THE LD-STRUCTURE OF B

• Proposition: The ALD-system (B, \ast, \circ) is torsion free:
 Each element of B generates a free subsystem.

• Each parenthesized braid has a canonical expression in terms of special ones.
 \uparrow
 the closure of 1 under \ast and \circ

• Proposition: The group B is orderable; more precisely:
 Each element of B has an expression in which the σ_i with minimal index
 occurs only positively (no σ_i^{-1}) or only negatively (no σ_i).
• Proposition: The ALD-system \((B, *, \circ)\) is torsion free:
 Each element of \(B\) generates a free subsystem.

• Each parenthesized braid has a canonical expression in terms of special ones.

↑ the closure of \(1\) under \(*\) and \(\circ\)

• Proposition: The group \(B\) is orderable; more precisely:
 Each element of \(B\) has an expression in which the \(\sigma_i\) with minimal index
 occurs only positively (no \(\sigma_i^{-1}\)) or only negatively (no \(\sigma_i\)).

Similar to the case of \(B_\infty\), but surprising because of the \(a_i\)'s: no flexibility.
• Proposition: The ALD-system \((B, *, \circ)\) is torsion free:
 Each element of \(B\) generates a free subsystem.

• Each parenthesized braid has a canonical expression in terms of special ones.

\[\text{the closure of 1 under } \ast \text{ and } \circ\]

• Proposition: The group \(B\) is orderable; more precisely:
 Each element of \(B\) has an expression in which the \(\sigma_i\) with minimal index
 occurs only positively (no \(\sigma_i^{-1}\)) or only negatively (no \(\sigma_i\)).

Similar to the case of \(B_\infty\), but surprising because of the \(a_i\)'s: no flexibility.

\(\leftrightarrow\) \(B\) is connected with the “geometry group” of the algebraic laws ALD.
Well-known: $B_n \simeq \text{MCG}(D_n) \leftrightarrow \text{Aut}(F_n)$.
• Well-known: $B_n \cong \text{MCG}(D_n) \hookrightarrow \text{Aut}(F_n)$.

Here: $D_n \mapsto$ sphere with a Cantor set of punctures
Well-known: $B_n \simeq \text{MCG}(D_n) \hookrightarrow \text{Aut}(F_n)$.

Here: $D_n \mapsto$ sphere with a Cantor set of punctures $S^2 \setminus \text{Cantor}$
• Well-known: $B_n \simeq \text{MCG}(D_n) \hookrightarrow \text{Aut}(F_n)$.

Here: $D_n \mapsto$ sphere with a Cantor set of punctures

$S^2 \setminus \text{Cantor}$ ← a continuous gap with countably many bridges indexed by dyadic numbers
Well-known: \(B_n \cong \text{MCG}(D_n) \hookrightarrow \text{Aut}(F_n) \).

Here: \(D_n \mapsto \) sphere with a Cantor set of punctures \(S^2 \setminus \text{Cantor} \)← a continuous gap with countably many bridges indexed by dyadic numbers

Dehn half-twist: exchanging \(U_i \) and \(U_{i+1} \)
Well-known: $B_n \simeq \text{MCG}(D_n) \hookrightarrow \text{Aut}(F_n)$.

Here: $D_n \hookrightarrow$ sphere with a Cantor set of punctures

$S^2 \setminus \text{Cantor}$

σ_i Dehn half-twist: exchanging U_i and U_{i+1}

α_i dilatation: expanding U_i into $U_i \sqcup U_{i+1}$
Lemma: $B \to \text{MCG}(S^2 \setminus \text{Cantor})$.
Lemma: $B \rightarrow \text{MCG}(S^2 \setminus \text{Cantor})$.

Look at action on π_1.
Lemma: \(B \rightarrow \text{MCG}(S^2 \setminus \text{Cantor}) \).

\[\Rightarrow \text{Look at action on } \pi_1. \]

Well known: \(\pi_1(D_n) = F_n \):
ACTION ON THE FUNDAMENTAL GROUP

- Lemma: \(B \to \text{MCG}(S^2 \setminus \text{Cantor}) \).
 \[\Rightarrow \] Look at action on \(\pi_1 \).

- Well known: \(\pi_1(D_n) = F_n \):

- Here: \(\pi_1(S^2 \setminus \text{Cantor}) = F_\infty \)

basis indexed by finite sequences of integers
ACTION ON THE FUNDAMENTAL GROUP

- Lemma: \(B \to \text{MCG}(S^2 \setminus \text{Cantor}) \).

\[\rightsquigarrow \text{Look at action on } \pi_1. \]

- Well known: \(\pi_1(D_n) = F_n \):

- Here: \(\pi_1(S^2 \setminus \text{Cantor}) = F_\infty \)

basis indexed by finite sequences of integers
ARTIN REPRESENTATION

\[x_1 x_1 x_1 \]
\[x_2 x_2 x_2 \]
\[x_3 x_3 x_3 x_1,1 x_1,1 x_1,1 x_1,1 \]
\[x_1,2 x_1,2 x_1,2 x_1,2 \]
\[x_2,1 x_2,1 x_2,1 x_2,1 \]
\[\sigma_1 \]
\begin{equation}
\{ x_{1,s} \mapsto x_1 x_{2,s} x_{1}^{-1}, \ x_{2,s} \mapsto x_{1,s}, \ x_{j,s} \mapsto x_{j,s} \ (j \geq 3) \}
\end{equation}
ARTIN REPRESENTATION

\[
x_1 \xleftrightarrow{a_1} x_1 x_2 \xleftrightarrow{\sigma_1} x_1 x_2 x_1^{-1}
\]

\[
\begin{cases}
x_{1,s} \mapsto x_{1} x_{2,s} x_{1}^{-1} \\
x_{2,s} \mapsto x_{1,s} \\
x_{j,s} \mapsto x_{j,s} \quad (j \geq 3)
\end{cases}
\]
\[x_1, s \mapsto x_1 x_2, s x_1^{-1} \]
\[x_2, s \mapsto x_1, s \]
\[x_j, s \mapsto x_j, s (j \geq 3) \]
Lemma: $B \rightarrow$ subgroup of $\text{MCG}(S^2 \setminus \text{Cantor}) \rightarrow \text{Aut}(F_\infty)$.
Lemma: \(B \rightarrow \text{subgroup of } \text{MCG}(S^2 \setminus \text{Cantor}) \rightarrow \text{Aut}(F_{\infty}). \)

Theorem: The above mappings are embeddings.
• Lemma: $B \rightarrow$ subgroup of $\text{MCG}(S^2 \setminus \text{Cantor}) \rightarrow \text{Aut}(F_\infty)$.

• Theorem: The above mappings are embeddings.

~\Rightarrow~ The Artin representation of B is faithful.
• **Lemma:** \(B \rightarrow \text{subgroup of } \text{MCG}(S^2 \setminus \text{Cantor}) \rightarrow \text{Aut}(F_\infty). \)

• **Theorem:** The above mappings are **embeddings**.

 \[\leadsto \text{The Artin representation of } B \text{ is faithful.} \]

• **Sketch of proof** (\[\leadsto \text{uses the LD-structure again} \):
• **Lemma:** $B \rightarrow$ subgroup of $\text{MCG}(S^2 \setminus \text{Cantor}) \rightarrow \text{Aut}(F_{\infty})$.

• **Theorem:** The above mappings are embeddings.

 \leadsto The Artin representation of B is faithful.

• **Sketch of proof** (\leadsto uses the LD-structure again):
 Want to show: If w is a word with at least one σ_1 and no σ_1^{-1}, then the automorphism \tilde{w} associated with w moves some x_s \leadsto hence $\neq \text{id}$.
• **Lemma:** \(B \rightarrow \) subgroup of \(\text{MCG}(S^2 \setminus \text{Cantor}) \rightarrow \text{Aut}(F_\infty) \).

• **Theorem:** The above mappings are embeddings.

\[\implies \text{The Artin representation of } B \text{ is faithful.} \]

• **Sketch of proof** (\(\implies \) uses the LD-structure again):

Want to show: If \(w \) is a word with at least one \(\sigma_1 \) and no \(\sigma_1^{-1} \), then the automorphism \(\tilde{w} \) associated with \(w \) moves some \(x_s \) \(\implies \) hence \(\neq \text{id} \).

Key point: \(\tilde{w} \) can be read from \(w \) by colouring trees;

(similar to the Hurwitz action of a braid)
• Lemma: $B \rightarrow \text{subgroup of } \text{MCG}(S^2 \setminus \text{Cantor}) \rightarrow \text{Aut}(F_\infty)$.

• Theorem: The above mappings are embeddings.

 \Rightarrow The Artin representation of B is faithful.

• Sketch of proof (\Rightarrow uses the LD-structure again):

 Want to show: If w is a word with at least one σ_1 and no σ_1^{-1}, then the automorphism \tilde{w} associated with w moves some x_s \Rightarrow hence $\neq \text{id}$.

 Key point: \tilde{w} can be read from w by colouring trees;

 (similar to the Hurwitz action of a braid)

 Then use Larue's method: if w contains at least one σ_1 and no σ_1^{-1},

 then $\tilde{w}(x_1)$ finishes with x_1^{-1}.

 (control reductions)
• Lemma: $B \rightarrow \text{subgroup of } \text{MCG}(S^2 \setminus \text{Cantor}) \rightarrow \text{Aut}(F_{\infty})$.

• Theorem: The above mappings are embeddings.

 \implies The Artin representation of B is faithful.

• Sketch of proof (\implies uses the LD-structure again):

 Want to show: If w is a word with at least one σ_1 and no σ_1^{-1}, then

 the automorphism \tilde{w} associated with w moves some x_s \implies hence $\neq \text{id}$.

 Key point: \tilde{w} can be read from w by colouring trees;

 (similar to the Hurwitz action of a braid)

 Then use Larue's method: if w contains at least one σ_1 and no σ_1^{-1},

 then $\tilde{w}(x_1)$ finishes with x_1^{-1}.

 (control reductions)

\blacksquare
• http://www.math.unicaen.fr/~dehornoy
• http://www.math.unicaen.fr/~dehornoy
• http://www.math.binghampton.edu/matt: Matt Brin
• http://www.math.unicaen.fr/~dehornoy
• http://www.math.binghampton.edu/matt: Matt Brin
• see also: Louis Funar & Christophe Kapoudjian