Abstract:

We say that a field \(F \subseteq \overline{\mathbb{Q}} \) has the Bogomolov property, if there exists a positive lower bound for the logarithmic Weil height of non torsion points in \(F^* \). This property is in general not preserved under finite field extensions. The only known counterexample (due to Amoroso and Nuccio) comes from an extension of the totally real numbers \(\mathbb{Q}_{tr}^* \). After a short introduction on heights, we will discuss lower height bounds in arbitrary finite extensions of \(\mathbb{Q}_{tr}^* \). For an elliptic curve \(E \) defined over some number field we have the same definition of Bogomolov property if we use the Néron-Tate height on \(E(F) \) instead of the Weil height on \(F^* \). We will present an example, to show that also in this setting the Bogomolov property is not preserved under finite field extensions.